www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktionen
Stammfunktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Di 06.03.2007
Autor: Ailien.

Aufgabe
Geben sie eine Stammfunktion an.
a) f(x)=3x
b) f(x)=0,5x²
c) f(x)=Wurzel aus 2x
d) f(x)= 0
e) f(x)=2x^-2

Hallo,
ich bin etwas spät dran aber ich grüble schon die ganze Zeit und ich hab gar keine Idee. Nur zu e hätte ich einen Ansatz:
f(x)= 2x^-2
F(x)= 2*(1/2x^-1) = [mm] x^-1=1/x^1 [/mm]


aber ich glaub nicht, dass das stimmt. Kann mir jmd von euch weiterhelfen?
Danke schonmal!

        
Bezug
Stammfunktionen: Potenzregel
Status: (Antwort) fertig Status 
Datum: 20:56 Di 06.03.2007
Autor: Loddar

Hallo Ailien!

Alle Aufgaben kannst Du mit der MBPotenzregel der Integration lösen:

[mm] $\integral{x^n \ dx} [/mm] \ = \ [mm] \bruch{1}{n+1}*x^{n+1} [/mm] + C$



Bei Aufgabe c solltest Du erst umformen zu:

$f(x) \ = \ [mm] \wurzel{2*x} [/mm] \ = \ [mm] \wurzel{2}*\wurzel{x} [/mm] \ = \ [mm] \wurzel{2}*x^{\bruch{1}{2}}$ [/mm]



Aufgabe e stimmt leider nicht so ... Du musst durch die neue (um 1 erhöhte) Hochzahl teilen:

[mm] $\integral{2*x^{-2} \ dx} [/mm] \ = \ [mm] 2*\bruch{x^{-2+1}}{-2+1} [/mm] \ = \ [mm] 2*\bruch{x^{-1}}{-1} [/mm] \ = \ [mm] -2*x^{-1} [/mm] \ = \ [mm] -\bruch{2}{x}+C$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Stammfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 06.03.2007
Autor: Ailien.

Hmm das leuchtet mir alles noch nicht ein...Mein Lehrer sagt immer wir müssen das so hinnehmen denn er hat keine Zeit das zu erklären. Demnach müsste ih doch aber bei d nichts "aufleiten" können weil kein x vorhanden ist oder?

Bezug
                        
Bezug
Stammfunktionen: Integrationskonstante
Status: (Antwort) fertig Status 
Datum: 21:18 Di 06.03.2007
Autor: Loddar

Hallo Ailien!


Deie Funktion $f(x) \ = \ 0$ ergibt als Stammfunktion eine Konstante: $f(x) \ = \ c$ .

Diese ergibt sich aus der Integrationskonstante, welch bei unbestimmten Integralen unerläßlich ist.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]