www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Deutsche Mathe-Olympiade" - Spiel-Aufgabe
Spiel-Aufgabe < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiel-Aufgabe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:03 Mo 18.07.2011
Autor: KingStone007

Hallo, ich habe folgende Aufgabe versucht zu lösen. Habe aber nichts wirkliches gefunden. Könntet ihr vllt ein paar Denkanstöße geben.?
Es handelt sich um die zweite Aufgabe.

[]Aufgaben

Lg, David

        
Bezug
Spiel-Aufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Mo 18.07.2011
Autor: Al-Chwarizmi

hallo KingStone,

der Link funktioniert nicht, bzw. dahinter steckt laut
Quelltext gar kein wirklicher Link

LG

Bezug
        
Bezug
Spiel-Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Mo 18.07.2011
Autor: reverend

Hallo David,

jetzt funktioniert der Link, danke.

Es ist immer gut, solche Spiele erst einmal in einer kleineren Ausgabe zu betrachten.

Auf einem n*n-Brett gibt es ja 2n(n-1) Strecken, von denen maximal n-1 belegt werden dürfen. Allerdings gibt es Endstellungen, in denen kein Zug mehr möglich ist, die u.U. weniger Strecken belegen.

Schau Dir doch erstmal ein 3*3-Brett an und ein 4*4.

Grüße
reverend


Bezug
                
Bezug
Spiel-Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Mo 18.07.2011
Autor: KingStone007

Nun, könnte es sein, dass es gar keine sonderliche Strategie gibt, sondern es eine fest Anzahl an zu ziehenden Strecken gibt. Vielleicht [mm] n^2-1 [/mm] Strecken? Damit gäbe es also für n=8 ungerade viele Strecken und C würde gewinnen.?

Lg, David

Bezug
                        
Bezug
Spiel-Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Mo 18.07.2011
Autor: reverend

Hi,

> Nun, könnte es sein, dass es gar keine sonderliche
> Strategie gibt, sondern es eine fest Anzahl an zu ziehenden
> Strecken gibt.

Nein, das ist nicht so.

> Vielleicht [mm]n^2-1[/mm] Strecken?

Das ist das Maximum, aber es können, wie gesagt, auch weniger sein. Sogar viel weniger!

> Damit gäbe es
> also für n=8 ungerade viele Strecken und C würde
> gewinnen.?

Grüße
rev


Bezug
                                
Bezug
Spiel-Aufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Mo 18.07.2011
Autor: KingStone007

Ouh.. Achso Mist, ich dachte, man darf immer eine Strecke an den gesamten Streckenzug ziehen, also an jedem Punkt von diesem und nicht nur an die Endpunkte. :D
Okay, ich schau es mir nochmal an. ;D

Lg, David

Bezug
        
Bezug
Spiel-Aufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Mo 18.07.2011
Autor: Stoecki

es geht vermute ich um dieses streckenspiel?

also aus spieltheoretischer sicht ist das ein kombinatorisches spiel. das heißt entweder besitzt ein spieler eine gewinnstrategie oder der eine spieler kann den anderen immer zu einem remis zwingen.

um eine gewinnstrategie oder remistrategie zu erzwingen solltest du dir überlegen in welchen situationen man nicht mehr setzen kann und ausgehend von diesen situationen dir quasi rückwärts überlegen, wie du einen gegner als einer der spieler in diese situation bringen kannst. da es in dem spiel kein remis geben kann muss es im übrigen eine gewinnstrategie für einen spieler geben. ich jhabe selber leider grade keine zeit mich näher damit zu beschäftigen, aber unter dem stichwort kombinatorische spiele sollte google schon mal helfen können.

gruß bernhard

Bezug
        
Bezug
Spiel-Aufgabe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Mi 20.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]