Spannung einer Röntgenröhre < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Ein gut kollimierter Elektronenstrahl trifft auf einen Kristall mit dem Netzebenenabstand d=0,9 A (Angström). Bei [mm] \phi=25° [/mm] beobachtet man ein Interferenzmaximum (Bragg'sche Reflexion).
a) Wie groß ist die DeBroglie-Wellenlänge der Elektronen und mit welcher Spannung wurden die Elektronen beschleunigt?
b) Derselbe Kristall zeigt für monochromatisches Röntgenlicht unter demselben Winkel ein Reflexionsmaximum. Wie groß muss die Spannung an der Röntgenröhre sein, wenn man annimmt, dass 20% der Elektronenenergie in Strahlungsenergie umgewandelt wurden? |
Hallo ihr,
hab Probleme mit der Fragestellung B. Zur ersten ergaben sich folgende Lösungen:
Beschleunigungsspannung [mm] U_{e}=259,5 [/mm] V
DeBroglie-Wellenlänge [mm] \lambda=0,7607*10^{-10}m
[/mm]
Doch nun zu B. Folgende Formel hab ich im Kopf:
[mm] E=h*\nu=\bruch{h*c}{\lambda}
[/mm]
Ich habe das Beispiel von jemandem bekommen. Die Person bekommt für E den Wert [mm] 1,986,10^{-15}J. [/mm] Wenn ich nun nachrechne, dann hat sie mit der Wellenlänge 1 Angström gerechnet. Dies erscheint mir ein wenig eigenartig. Man solle doch die DeBroglie-Wellenlänge miteinbeziehen, oder? Dann ergibt sich für E:
[mm] E=\bruch{6,626*10^{-34}*300000000}{1*10^{-10}}=1,986*^10^{-15}J [/mm] (1 Angström = monoch. Röntgenlicht)
[mm] E_{e}=E*0,2=5,226*10^{-16} [/mm]
In der Ausarbeitung steht [mm] E_{e}=\bruch{E}{0,2}, [/mm] ich weiß aber nicht warum, finde das unlogisch. Und genau darum geht's.
Ich hoffe, jemand kann mir das erklären, kommm nicht mal mit Hilfe von wiki drauf.
Gruß, der hannes
|
|
|
|
Zu der Sache mit dem 1A: Da kann ich dir nicht weiterhelfen, da mir nicht ganz klar ist, wo genau man diese 25° findet. Ist das der Ein-/Ausfallswinkel zur Oberfläche oder zum Lot? Oder der Winkel zwischen den beiden Strahlen?
Zu der Sache mit der Energie:
Schau dir doch mal deine beiden Zahlenwerte an:
Da steht, daß die Photonen eine Energie von [mm] 10^{-15}J [/mm] haben müssen, nach deiner Rechnung haben dann die Elektronen eine Energie von [mm] 10^{-16}J. [/mm] Ist das logisch? Ein Bruchteil der Elektronenenergie wird in Strahlug umgesetzt, und die Strahlung hat dann zehn mal mehr Energie als die Elektronen?
Die Ausarbeitung hat recht: [mm] $20\%*E_e=E$ [/mm] also [mm] $E_e=\frac{E}{20\%}$. [/mm] Das ist Prozentrechnung!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:23 Di 01.05.2007 | Autor: | Braunstein |
Ja, genau, danke! Jetzt macht das Sinn!!!!
Bez. den 25°: Ist vorgegeben! ;) Und das reicht mir völlig (Formeleinsetzübung).
Gruß und vielen Dank.
h.
|
|
|
|