Skalarprodukt / Gram-Schmidt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:42 Mo 09.05.2011 | Autor: | chesn |
Aufgabe | Es sei [mm] \phi: \IR[x]_{\le 3} \times \IR[x]_{\le 3} \to \IR [/mm] : [mm] \phi(f,g) [/mm] = [mm] \integral_{0}^{1}{f(t)*g(t) dt} [/mm] gegeben.
(a) Zeige, dass [mm] \phi [/mm] ein Skalarprodukt auf [mm] \IR[x]_{\le 3} [/mm] ist.
(b) Wende das Gram-Schmidt-Verfahren auf die Basis [mm] \{1,x,x^2,x^3\} [/mm] an. |
Hallo! Bitte um Korrektur meiner Lösungen, wäre nett wenn jemand kurz Zeit hat. Danke schonmal!! :]
(a) Ein Skalarprodukt ist definiert als positiv definite, symmetrische Bilinearform. Es gilt also:
(i) $ <x+y,z> = <x,z> + <y,z> $
(ii) $ <x,y+z> = <x,y> + <x,z> $
(iii) $ <x, [mm] \lambda [/mm] y> = [mm] <\lambda [/mm] x,y> = [mm] \lambda [/mm] <x,y> $
(iv) $ <x,y> = <y,x> $
(v) $ <x,x> [mm] \ge [/mm] 0 $ und $ <x,x> = 0 [mm] \gdw [/mm] x = 0 $
Beweis:
Seien nun f,g,h [mm] \in \IR[x]_{\le 3}.
[/mm]
zu (i): [mm] \phi(f+h,g)=\integral_{0}^{1}{(f(t)+h(t))*g(t) dt} [/mm] = [mm] \integral_{0}^{1}{f(t)*g(t)+h(t)*g(t) dt} [/mm] = [mm] \integral_{0}^{1}{f(t)*g(t) dt} [/mm] + [mm] \integral_{0}^{1}{h(x)*g(t) dt} [/mm] = [mm] \phi(f,g) [/mm] + [mm] \phi(h,g)
[/mm]
zu (ii): Wie bei (i).
zu (iii): [mm] \phi(f, \lambda [/mm] g) = [mm] \integral_{0}^{1}{f(t)*(\lambda*g(t))dt} [/mm] = [mm] \integral_{0}^{1}{\lambda*f(t)*g(t)dt} [/mm] = [mm] \phi(\lambda [/mm] f,g) = [mm] \lambda*\integral_{0}^{1}{f(t)*g(t)dt} [/mm] = [mm] \lambda*\phi(f,g)
[/mm]
zu (iv): [mm] \phi(f,g) [/mm] = [mm] \integral_{0}^{1}{f(t)*g(t))dt} [/mm] = [mm] \integral_{0}^{1}{g(t)*f(t))dt} [/mm] = [mm] \phi(g,f)
[/mm]
zu (v): [mm] \phi(f,f) \ge [/mm] 0 folgt direkt aus der Definition des Integrals als Betrag.
"<=" Mit f = 0 folgt [mm] \phi(f,f) [/mm] = [mm] \integral_{0}^{1}{0*0dt} [/mm] = 0.
Problem: "=>" Für $ [mm] \integral_{0}^{1}{f(t)*f(t))dt} [/mm] = 0 [mm] \Rightarrow [/mm] f = 0 $ fehlt mir eine sinnvolle Argumentation. Kann mir jemand einen Tipp geben?? Danke!
(b) Gram-Schmidt-Verfahren:
Sei $ W := [mm] \{1,x,x^2,x^3\} [/mm] $.
[mm] v_1 [/mm] = [mm] w_1 [/mm] = 1
[mm] v_2 [/mm] = x - [mm] \bruch{\integral_{0}^{1}{x dx}}{\integral_{0}^{1}{1 dx}}*(x-\bruch{1}{2}) [/mm] = [mm] x-\bruch{1}{2}
[/mm]
[mm] v_3 [/mm] = (...) = [mm] x^2-x+\bruch{1}{6}
[/mm]
[mm] v_4 [/mm] = (...) = [mm] x^3-\bruch{3}{2}x^2+\bruch{3}{5}x-\bruch{1}{20}
[/mm]
(nach Wikipedia )
Vielen Dank fürs Drüberschauen!! :)
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:52 Mo 09.05.2011 | Autor: | chesn |
[mm] Problem: "=>" Für $ \integral_{0}^{1}{f(t)\cdot{}f(t))dt} = 0 \Rightarrow f = 0 $ fehlt mir eine sinnvolle Argumentation. Kann mir jemand einen Tipp geben?? Danke! [/mm]
Habe denke ich ein Gegenbeispiel gefunden: Sei f(x) = [mm] \wurzel{x-\bruch{1}{2}} [/mm] dann ist [mm] \phi(f,f) [/mm] = [mm] \integral_{0}^{1}{(x-\bruch{1}{2})dx} [/mm] = 0
Verwirrt mich gerade etwas...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:45 Mo 09.05.2011 | Autor: | fred97 |
> [mm]Problem: "=>" Für $ \integral_{0}^{1}{f(t)\cdot{}f(t))dt} = 0 \Rightarrow f = 0 $ fehlt mir eine sinnvolle Argumentation. Kann mir jemand einen Tipp geben?? Danke![/mm]
>
> Habe denke ich ein Gegenbeispiel gefunden: Sei f(x) =
> [mm]\wurzel{x-\bruch{1}{2}}[/mm] dann ist [mm]\phi(f,f)[/mm] =
> [mm]\integral_{0}^{1}{(x-\bruch{1}{2})dx}[/mm] = 0
>
> Verwirrt mich gerade etwas...
Das ist kein Gegenbeispiel ! [mm] \wurzel{x-\bruch{1}{2}} [/mm] ist nur für x [mm] \ge [/mm] 1/2 definiert !
FRED
>
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:33 Mo 09.05.2011 | Autor: | chesn |
ahh.. jetzt seh ich den fehler! vielen dank nochmal! :)
|
|
|
|
|
Hallo chesn,
> Es sei [mm]\phi: \IR[x]_{\le 3} \times \IR[x]_{\le 3} \to \IR[/mm]
> : [mm]\phi(f,g)[/mm] = [mm]\integral_{0}^{1}{f(t)*g(t) dt}[/mm] gegeben.
>
> (a) Zeige, dass [mm]\phi[/mm] ein Skalarprodukt auf [mm]\IR[x]_{\le 3}[/mm]
> ist.
>
> (b) Wende das Gram-Schmidt-Verfahren auf die Basis
> [mm]\{1,x,x^2,x^3\}[/mm] an.
> Hallo! Bitte um Korrektur meiner Lösungen, wäre nett
> wenn jemand kurz Zeit hat. Danke schonmal!! :]
>
> (a) Ein Skalarprodukt ist definiert als positiv definite,
> symmetrische Bilinearform. Es gilt also:
>
> (i) [mm] = + [/mm]
> (ii) [mm] = + [/mm]
>
> (iii) [mm] = <\lambda x,y> = \lambda [/mm]
> (iv)
> [mm] = [/mm]
> (v) [mm] \ge 0[/mm] und [mm] = 0 \gdw x = 0[/mm]
>
> Beweis:
> Seien nun f,g,h [mm]\in \IR[x]_{\le 3}.[/mm]
>
> zu (i): [mm]\phi(f+h,g)=\integral_{0}^{1}{(f(t)+h(t))*g(t) dt}[/mm]
> = [mm]\integral_{0}^{1}{f(t)*g(t)+h(t)*g(t) dt}[/mm] =
> [mm]\integral_{0}^{1}{f(t)*g(t) dt}[/mm] +
> [mm]\integral_{0}^{1}{h(x)*g(t) dt}[/mm] = [mm]\phi(f,g)[/mm] + [mm]\phi(h,g)[/mm]
>
> zu (ii): Wie bei (i).
>
> zu (iii): [mm]\phi(f, \lambda[/mm] g) =
> [mm]\integral_{0}^{1}{f(t)*(\lambda*g(t))dt}[/mm] =
> [mm]\integral_{0}^{1}{\lambda*f(t)*g(t)dt}[/mm] = [mm]\phi(\lambda[/mm] f,g)
> = [mm]\lambda*\integral_{0}^{1}{f(t)*g(t)dt}[/mm] =
> [mm]\lambda*\phi(f,g)[/mm]
>
> zu (iv): [mm]\phi(f,g)[/mm] = [mm]\integral_{0}^{1}{f(t)*g(t))dt}[/mm] =
> [mm]\integral_{0}^{1}{g(t)*f(t))dt}[/mm] = [mm]\phi(g,f)[/mm]
>
> zu (v): [mm]\phi(f,f) \ge[/mm] 0 folgt direkt aus der Definition des
> Integrals als Betrag.
> "<=" Mit f = 0 folgt [mm]\phi(f,f)[/mm] = [mm]\integral_{0}^{1}{0*0dt}[/mm]
> = 0.
Alles gut!
> Problem: "=>" Für [mm]\integral_{0}^{1}{f(t)*f(t))dt} = 0 \Rightarrow f = 0[/mm]
> fehlt mir eine sinnvolle Argumentation. Kann mir jemand
> einen Tipp geben?? Danke!
Naja, [mm]f(t)\cdot{}f(t)=(f(t))^2\ge 0[/mm]
Der Integrand ist also als Quadrat nicht-negativ.
Das Integral kann also nur Null werden, wenn der Integrand 0 ist ...
Also [mm]((f(t))^2=0[/mm] und damit [mm]f(t)=0[/mm]
>
>
> (b) Gram-Schmidt-Verfahren:
>
> Sei [mm]W := \{1,x,x^2,x^3\} [/mm].
>
> [mm]v_1[/mm] = [mm]w_1[/mm] = 1
>
> [mm]v_2[/mm] = x - [mm]\bruch{\integral_{0}^{1}{x dx}}{\integral_{0}^{1}{1 dx}}*(x-\bruch{1}{2})[/mm]
Wieso [mm]\cdot{}(x-1/2)[/mm] ?Da muss doch [mm]\cdot{}v_1[/mm] [mm], also [/mm] [mm]\cdot{}1[/mm] stehen!
> = [mm]x-\bruch{1}{2}[/mm]
>
> [mm]v_3[/mm] = (...) = [mm]x^2-x+\bruch{1}{6}[/mm]
>
> [mm]v_4[/mm] = (...) =
> [mm]x^3-\bruch{3}{2}x^2+\bruch{3}{5}x-\bruch{1}{20}[/mm]
Das habe ich nicht mehr nachgerechnet.
Aber ich denke, dass es wohl passt, du hast das Prinzip ja kapiert.
Wenn du trotzdem Kontrolle möchtest, poste die Rechenschritte.
Ist ja unsinnig, alles nochmal zu rechnen, hast du ja schon getan
>
> (nach
> Wikipedia
> )
>
> Vielen Dank fürs Drüberschauen!! :)
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:55 Mo 09.05.2011 | Autor: | huzein |
>Naja, $ [mm] f(t)\cdot{}f(t)=(f(t))^2\ge [/mm] 0 $
>Der Integrand ist also als Quadrat nicht-negativ.
>Das Integral kann also nur Null werden, wenn der Integrand 0 ist ...
>Also $ [mm] ((f(t))^2=0 [/mm] $ und damit f(t)=0
es genügt nicht so zu argumentieren.
man muss dazu folgendes zeigen:
Sei [mm] $0\leq f\in [/mm] C([0,1])$, dann gilt
[mm] $\int_0^1 f(x)dx=0\implies f\equiv [/mm] 0.$
und das zeigt man indirekt. angenommen es gibt ein [mm] $x_0\in [/mm] [0,1]$ mit [mm] $f(x_0)>0$ [/mm] usw..
Erst dann kann man sagen: Da [mm] $g^2\geq [/mm] 0$ und [mm] $\int g^2 [/mm] =0$ folgt [mm] $g\equiv0$.
[/mm]
Gruß
|
|
|
|
|
Hallo,
ein reelles Polynom ist trivialerweise stetig, ebenso dessen Quadrat.
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:32 Mo 09.05.2011 | Autor: | huzein |
ist schon klar, es geht vielmehr um die Implikation:
[mm] $\int_a^b f(x)dx=0\implies f\equiv [/mm] 0$, falls [mm] $0\leq f\in [/mm] C([a,b])$.
|
|
|
|