Schwerpunkt Tetraeder < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:28 So 22.11.2015 | Autor: | Teryosas |
Aufgabe | Berechnen Sie die x-Komponente des Schwerpunktes eines homogenen Tetraeders T, das durch die drei Koordinatenebenen und die Ebene 4x+2y+z=8 berandet ist. |
hey,
ich weiß wie ich die x-Komponente berechne, bin mir aber nicht sicher mit den Grenzen...
schätze mal das geht in die ungefähr richtig Richtung, nur wo mit den Koeffizienten von x und y hin?
dei 2 vom y hab ich ja praktisch im innersten Integral reingepackt aber iwie bezweifel ich das es richtig ist?
T={(x,y,z) | 0 [mm] \le [/mm] z [mm] \le [/mm] 8, 0 [mm] \le [/mm] y [mm] \le [/mm] 8-z, 0 [mm] \le [/mm] x [mm] \le [/mm] 8-z-2y}
[mm] \integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{dxdydz}}}
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:53 Mo 23.11.2015 | Autor: | fred97 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Berechnen Sie die x-Komponente des Schwerpunktes eines
> homogenen Tetraeders T, das durch die drei
> Koordinatenebenen und die Ebene 4x+2y+z=8 berandet ist.
> hey,
> ich weiß wie ich die x-Komponente berechne, bin mir aber
> nicht sicher mit den Grenzen...
> schätze mal das geht in die ungefähr richtig Richtung,
> nur wo mit den Koeffizienten von x und y hin?
> dei 2 vom y hab ich ja praktisch im innersten Integral
> reingepackt aber iwie bezweifel ich das es richtig ist?
>
> T={(x,y,z) | 0 [mm]\le[/mm] z [mm]\le[/mm] 8, 0 [mm]\le[/mm] y [mm]\le[/mm] 8-z, 0 [mm]\le[/mm] x [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> 8-z-2y}
>
> [mm]\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{dxdydz}}}[/mm]
Mit diesem Integral berechnest Du das Volumen V von T
Die x - Komponente des Schwerpunktes von T ist dann gegeben durch
[mm] \bruch{1}{V}*\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{xdxdydz}}}
[/mm]
FRED
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:38 Mo 23.11.2015 | Autor: | Teryosas |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> > Berechnen Sie die x-Komponente des Schwerpunktes eines
> > homogenen Tetraeders T, das durch die drei
> > Koordinatenebenen und die Ebene 4x+2y+z=8 berandet ist.
> > hey,
> > ich weiß wie ich die x-Komponente berechne, bin mir
> aber
> > nicht sicher mit den Grenzen...
> > schätze mal das geht in die ungefähr richtig
> Richtung,
> > nur wo mit den Koeffizienten von x und y hin?
> > dei 2 vom y hab ich ja praktisch im innersten Integral
> > reingepackt aber iwie bezweifel ich das es richtig ist?
> >
> > T={(x,y,z) | 0 [mm]\le[/mm] z [mm]\le[/mm] 8, 0 [mm]\le[/mm] y [mm]\le[/mm] 8-z, 0 [mm]\le[/mm] x
> [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
>
> > 8-z-2y}
> >
> >
> [mm]\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{dxdydz}}}[/mm]
>
> Mit diesem Integral berechnest Du das Volumen V von T
>
> Die x - Komponente des Schwerpunktes von T ist dann gegeben
> durch
>
> [mm]\bruch{1}{V}*\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{xdxdydz}}}[/mm]
>
> FRED
Viele Dank für die Antwort :)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:49 Mo 23.11.2015 | Autor: | Teryosas |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> > Berechnen Sie die x-Komponente des Schwerpunktes eines
> > homogenen Tetraeders T, das durch die drei
> > Koordinatenebenen und die Ebene 4x+2y+z=8 berandet ist.
> > hey,
> > ich weiß wie ich die x-Komponente berechne, bin mir
> aber
> > nicht sicher mit den Grenzen...
> > schätze mal das geht in die ungefähr richtig
> Richtung,
> > nur wo mit den Koeffizienten von x und y hin?
> > dei 2 vom y hab ich ja praktisch im innersten Integral
> > reingepackt aber iwie bezweifel ich das es richtig ist?
> >
> > T={(x,y,z) | 0 [mm]\le[/mm] z [mm]\le[/mm] 8, 0 [mm]\le[/mm] y [mm]\le[/mm] 8-z, 0 [mm]\le[/mm] x
> [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
>
> > 8-z-2y}
> >
> >
> [mm]\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{dxdydz}}}[/mm]
>
> Mit diesem Integral berechnest Du das Volumen V von T
>
> Die x - Komponente des Schwerpunktes von T ist dann gegeben
> durch
>
> [mm]\bruch{1}{V}*\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{xdxdydz}}}[/mm]
>
> FRED
Habe gerademal angefangen zu rechnen und komme auf ein Volumen von 0. Ist das normal???
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:07 Mo 23.11.2015 | Autor: | fred97 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> > Eingabefehler: "{" und "}" müssen immer paarweise
> > auftreten, es wurde aber ein Teil ohne Entsprechung
> > gefunden (siehe rote Markierung)
> >
> > > Berechnen Sie die x-Komponente des Schwerpunktes eines
> > > homogenen Tetraeders T, das durch die drei
> > > Koordinatenebenen und die Ebene 4x+2y+z=8 berandet ist.
> > > hey,
> > > ich weiß wie ich die x-Komponente berechne, bin mir
> > aber
> > > nicht sicher mit den Grenzen...
> > > schätze mal das geht in die ungefähr richtig
> > Richtung,
> > > nur wo mit den Koeffizienten von x und y hin?
> > > dei 2 vom y hab ich ja praktisch im innersten Integral
> > > reingepackt aber iwie bezweifel ich das es richtig ist?
> > >
> > > T={(x,y,z) | 0 [mm]\le[/mm] z [mm]\le[/mm] 8, 0 [mm]\le[/mm] y [mm]\le[/mm] 8-z, 0 [mm]\le[/mm] x
> > [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> Eingabefehler: "{" und "}" müssen immer paarweise
> > auftreten, es wurde aber ein Teil ohne Entsprechung
> > gefunden (siehe rote Markierung)
> >
> >
> > > 8-z-2y}
> > >
> > >
> >
> [mm]\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{dxdydz}}}[/mm]
> >
> > Mit diesem Integral berechnest Du das Volumen V von T
> >
> > Die x - Komponente des Schwerpunktes von T ist dann gegeben
> > durch
> >
> >
> [mm]\bruch{1}{V}*\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{xdxdydz}}}[/mm]
> >
> > FRED
>
>
> Habe gerademal angefangen zu rechnen und komme auf ein
> Volumen von 0. Ist das normal???
Das ist falsch.
Zeig Deine Rechnungen !
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:12 Mo 23.11.2015 | Autor: | Teryosas |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> > Eingabefehler: "{" und "}" müssen immer paarweise
> > auftreten, es wurde aber ein Teil ohne Entsprechung
> > gefunden (siehe rote Markierung)
> >
> > > Eingabefehler: "{" und "}" müssen immer paarweise
> > > auftreten, es wurde aber ein Teil ohne Entsprechung
> > > gefunden (siehe rote Markierung)
> > >
> > > > Berechnen Sie die x-Komponente des Schwerpunktes eines
> > > > homogenen Tetraeders T, das durch die drei
> > > > Koordinatenebenen und die Ebene 4x+2y+z=8 berandet ist.
> > > > hey,
> > > > ich weiß wie ich die x-Komponente berechne, bin
> mir
> > > aber
> > > > nicht sicher mit den Grenzen...
> > > > schätze mal das geht in die ungefähr richtig
> > > Richtung,
> > > > nur wo mit den Koeffizienten von x und y hin?
> > > > dei 2 vom y hab ich ja praktisch im innersten Integral
> > > > reingepackt aber iwie bezweifel ich das es richtig ist?
> > > >
> > > > T={(x,y,z) | 0 [mm]\le[/mm] z [mm]\le[/mm] 8, 0 [mm]\le[/mm] y [mm]\le[/mm] 8-z, 0 [mm]\le[/mm] x
> > > [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> Eingabefehler: "{" und "}" müssen immer paarweise
> > auftreten, es wurde aber ein Teil ohne Entsprechung
> > gefunden (siehe rote Markierung)
> >
> > Eingabefehler: "{" und "}" müssen immer paarweise
> > > auftreten, es wurde aber ein Teil ohne Entsprechung
> > > gefunden (siehe rote Markierung)
> > >
> > >
> > > > 8-z-2y}
> > > >
> > > >
> > >
> >
> [mm]\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{dxdydz}}}[/mm]
> > >
> > > Mit diesem Integral berechnest Du das Volumen V von T
> > >
> > > Die x - Komponente des Schwerpunktes von T ist dann gegeben
> > > durch
> > >
> > >
> >
> [mm]\bruch{1}{V}*\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{xdxdydz}}}[/mm]
> > >
> > > FRED
> >
> >
> > Habe gerademal angefangen zu rechnen und komme auf ein
> > Volumen von 0. Ist das normal???
>
>
> Das ist falsch.
>
> Zeig Deine Rechnungen !
>
> FRED
Habs das aus Zeitgründen schnell mit dem Integralrechner gemacht: http://www.integralrechner.de/
kam da bei dem 2. Integral auf den Wert 0 wodurch ja auch das 3. -äußerste- Integral = 0 wird...
Habe nun einfach mal die Grenzen des inneren Integrals auf [mm] \integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-y}{xdxdydz}}} [/mm] gesetzt. also statt 2y hab ich jetzt dort nur noch y stehen. So käme ich auf ein [mm] x_{s}=2??
[/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:36 Mo 23.11.2015 | Autor: | fred97 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> > Eingabefehler: "{" und "}" müssen immer paarweise
> > auftreten, es wurde aber ein Teil ohne Entsprechung
> > gefunden (siehe rote Markierung)
> >
> > > Eingabefehler: "{" und "}" müssen immer paarweise
> > > auftreten, es wurde aber ein Teil ohne Entsprechung
> > > gefunden (siehe rote Markierung)
> > >
> > > > Eingabefehler: "{" und "}" müssen immer paarweise
> > > > auftreten, es wurde aber ein Teil ohne Entsprechung
> > > > gefunden (siehe rote Markierung)
> > > >
> > > > > Berechnen Sie die x-Komponente des Schwerpunktes eines
> > > > > homogenen Tetraeders T, das durch die drei
> > > > > Koordinatenebenen und die Ebene 4x+2y+z=8 berandet ist.
> > > > > hey,
> > > > > ich weiß wie ich die x-Komponente berechne,
> bin
> > mir
> > > > aber
> > > > > nicht sicher mit den Grenzen...
> > > > > schätze mal das geht in die ungefähr richtig
> > > > Richtung,
> > > > > nur wo mit den Koeffizienten von x und y hin?
> > > > > dei 2 vom y hab ich ja praktisch im innersten Integral
> > > > > reingepackt aber iwie bezweifel ich das es richtig ist?
> > > > >
> > > > > T={(x,y,z) | 0 [mm]\le[/mm] z [mm]\le[/mm] 8, 0 [mm]\le[/mm] y [mm]\le[/mm] 8-z, 0 [mm]\le[/mm] x
> > > > [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> Eingabefehler: "{" und "}" müssen immer paarweise
> > auftreten, es wurde aber ein Teil ohne Entsprechung
> > gefunden (siehe rote Markierung)
> >
> > Eingabefehler: "{" und "}" müssen immer paarweise
> > > auftreten, es wurde aber ein Teil ohne Entsprechung
> > > gefunden (siehe rote Markierung)
> > >
> > > Eingabefehler: "{" und "}" müssen immer paarweise
> > > > auftreten, es wurde aber ein Teil ohne Entsprechung
> > > > gefunden (siehe rote Markierung)
> > > >
> > > >
> > > > > 8-z-2y}
> > > > >
> > > > >
> > > >
> > >
> >
> [mm]\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{dxdydz}}}[/mm]
> > > >
> > > > Mit diesem Integral berechnest Du das Volumen V von T
> > > >
> > > > Die x - Komponente des Schwerpunktes von T ist dann gegeben
> > > > durch
> > > >
> > > >
> > >
> >
> [mm]\bruch{1}{V}*\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-2y}{xdxdydz}}}[/mm]
> > > >
> > > > FRED
> > >
> > >
> > > Habe gerademal angefangen zu rechnen und komme auf ein
> > > Volumen von 0. Ist das normal???
> >
> >
> > Das ist falsch.
> >
> > Zeig Deine Rechnungen !
> >
> > FRED
>
> Habs das aus Zeitgründen schnell mit dem Integralrechner
> gemacht: http://www.integralrechner.de/
> kam da bei dem 2. Integral auf den Wert 0 wodurch ja auch
> das 3. -äußerste- Integral = 0 wird...
>
> Habe nun einfach mal die Grenzen des inneren Integrals auf
> [mm]\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-y}{xdxdydz}}}[/mm]
> gesetzt. also statt 2y hab ich jetzt dort nur noch y
> stehen. So käme ich auf ein [mm]x_{s}=2??[/mm]
Pardon ! Ich hab mich oben geirrt. Es ist
[mm] T=\{(x,y,z) | 0 $ \le $ z $ \le $ 8, 0 $ \le $ y $ \le $ -\bruch{1}{2}z+4, 0 $ \le $ x $ \le $ 2-\bruch{1}{2}y-\bruch{1}{4 }z \}
[/mm]
Auf ein Neues !
FRED
|
|
|
|
|
> Habe nun einfach mal die Grenzen des inneren Integrals auf
> [mm]\integral_{0}^{8}{\integral_{0}^{8-z}{\integral_{0}^{8-z-y}{xdxdydz}}}[/mm]
> gesetzt. also statt 2y hab ich jetzt dort nur noch y
> stehen.
Diese Überlegung verstehe ich nicht.
> So käme ich auf ein [mm]x_{s}=2??[/mm]
Dass [mm] x_S=2 [/mm] nicht stimmen kann, sieht man sofort, wenn
man sich die Pyramide vergegenwärtigt. Der Schwerpunkt S
sollte ja bestimmt im Inneren der Pyramide liegen.
Für jeden inneren Punkt des vorliegenden Tetraeders ist
aber 0<x<2.
Der einzige Punkt der Pyramide mit x=2 ist der auf der
x-Achse liegende Eckpunkt A(2,0,0). Der kann aber nicht
der Schwerpunkt sein.
LG , Al-Chw.
|
|
|
|
|
> Berechnen Sie die x-Komponente des Schwerpunktes eines
> homogenen Tetraeders T, das durch die drei
> Koordinatenebenen und die Ebene 4x+2y+z=8 berandet ist.
Hallo,
du hast das mittels Integration bearbeitet (was möglicher-
weise auch verlangt war).
Man kann die Aufgabe aber durch einfache Überlegungen
auch fast ohne Rechnung lösen.
Da die Lage des Schwerpunktes mit linearen (affinen)
Transformationen verträglich ist, kann man zuerst zum
Beispiel ein reguläres Tetraeder betrachten. Es ist eine
gängige Aufgabe der Vektorgeometrie, nachzuweisen, dass
der Schwerpunkt jede Höhe des Tetraeders im Verhältnis
1:3 aufteilt. Auch in Formelsammlungen ist dieses
Ergebnis zu finden.
Durch die Betrachtung einer geeigneten Projektion
sieht man, dass das Teilverhältnis dabei ebenfalls
erhalten bleibt.
Die Details lasse ich hier mal sein ...
LG , Al-Chw.
|
|
|
|