Schur Zerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 02:51 Sa 19.06.2010 | Autor: | Tanja26 |
Aufgabe | Berechnen Sie die Schur-Zerlegung der Matrix
[mm] A=\pmat{ -3 & -1 & 2 \\ 1 & -3 & -6 \\ 2 & 6 & 7} [/mm] |
Moin,
Ich habe zu erst die Eigenwerte gerechnet : [mm] \lambda_{1}=-1
[/mm]
[mm] \lambda_{2}= [/mm] 1-i
[mm] \lambda_{3} [/mm] = 1+i
dann Eigenvektoren [mm] E_{\lambda_{1}}=\vektor{2 \\ -2 \\ 1} E_{\lambda_{2,3}}=\vektor{0 \\ 0 \\ 0}
[/mm]
Und meine Frage wie berechne ich jetzt [mm] V^{-1}_{n}*A*V_{n}, [/mm]
wie muss eigentlich [mm] V_{n} [/mm] aussehen
|
|
|