www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Schnittpunkt von 2 Funktionen
Schnittpunkt von 2 Funktionen < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt von 2 Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Mi 21.06.2006
Autor: smurf

Hallo zusammen,

habe hier eine Aufgabe, bei der ich nicht wirklich weiter komme. Bin nicht sicher ob ich im richtigen Bereich bin, die Frage steht auf jeden fall bei mir im Script unter numerik. Bei bedarf bitte verschieben, danke.

Nun zur Frage:

Gesucht sind die Lösungen der Gleichung tan(x)=cos(x)

Zeigen Sie, dass es in [0, Pi/2] genau eine Lösung gibt.

Könnt ihr mir einen Tipp geben?
Danke schonmal

Gruß,
smurf

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittpunkt von 2 Funktionen: Umformen / Ersetzen
Status: (Antwort) fertig Status 
Datum: 12:43 Mi 21.06.2006
Autor: Roadrunner

Hallo smurf!


Ersetze: [mm] $\tan(x) [/mm] \ = \ [mm] \bruch{\sin(x)}{\cos(x)} [/mm] \ = \ [mm] \bruch{\wurzel{1-\cos^2(x)}}{\cos(x)}$ [/mm] .

Damit erhältst Du eine biquadratische Gleichung, bei der Du dann auch $t \ := \ [mm] \cos^2(x)$ [/mm] substituieren kannst.


Gruß vom
Roadrunner


Bezug
                
Bezug
Schnittpunkt von 2 Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 21.06.2006
Autor: smurf

Hallo Roadrunner,

vielen Dank erst einmal für deine schnelle Antwort.

Aber wie können wir dann  [mm] \bruch{\wurzel{1-t^2} }{t}[/mm] auflösen?

Bezug
                        
Bezug
Schnittpunkt von 2 Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mi 21.06.2006
Autor: dormant

Hallo!

Du sollst ja die die Gleichung tan(x)=cos(x) lösen. Die formst du so um:

tan(x)=cos(x) [mm] \gdw \bruch{\wurzel{1-cos^{2}(x)}}{cos(x)}=cos(x). [/mm]

Jetzt quadrierst du beide Seite und löst eine biquadratische Gleichung.

Gruß,
dormant

Bezug
                        
Bezug
Schnittpunkt von 2 Funktionen: zu früh substituiert
Status: (Antwort) fertig Status 
Datum: 14:02 Mi 21.06.2006
Autor: Roadrunner

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo smurf!


Du hast zu früh substituiert ...

Aus $\bruch{\wurzel{1-\cos^2(x)}}{\cos(x)} \ = \ \cos(x)}$ wird dann:  $\wurzel{1-\cos^2(x)} \ = \ \cos^2(x)$


Und nun kann mann substituieren, wenn man möchte:

$\wurzel{1-t} \ = \ t$ Diese Gleichung nun quadrieren und so weiter ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]