www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Rotationskörper
Rotationskörper < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationskörper: stimmt meine Rechnung?
Status: (Frage) beantwortet Status 
Datum: 22:18 Mo 14.07.2008
Autor: Dnake

Aufgabe
[mm] f(x)=1/((x+1)^2) [/mm]

gesucht: Volumen des Rotationskörpers um x zwischen x=0 und x=1

Hallo,

habe folgendes gerechnet:

Volumenformel genommen: [mm] \pi*\integral_{0}^{1}{f(x)^2 dx} [/mm]

f(x) quadriert: [mm] (1+x)^{-4} [/mm]

In die Formel geschrieben: [mm] \pi*\integral_{0}^{1}{(1+x)^{-4} dx} [/mm]

dann eine Substitution gemacht: t=1+x

[mm] \pi*\integral_{0}^{1}{(t)^{-4} dx} [/mm]

Dann Integriert

[mm] \pi*|-1/3*x^{-3}| [/mm]  mit integrationsgrenzen 0 und 1 (weiss nicht wie man das hier schreibt, damit es korrekt angezeigt wird)

Wenn ich das einsetze bekomme ich:

[mm] \pi*(-1/3)-(-1/8) [/mm]

= [mm] -\pi*5/24 [/mm]

Kommt mir irgendwie merkwürdig vor?

Negatives Volumen?

Danke schonmal !

Gruß

Jan

        
Bezug
Rotationskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 14.07.2008
Autor: Martinius

Hallo,

> [mm]f(x)=1/((x+1)^2)[/mm]
>  
> gesucht: Volumen des Rotationskörpers um x zwischen x=0 und
> x=1
>  
> Hallo,
>  
> habe folgendes gerechnet:
>  
> Volumenformel genommen: [mm]\pi*\integral_{0}^{1}{f(x)^2 dx}[/mm]
>  
> f(x) quadriert: [mm](1+x)^{-4}[/mm]
>  
> In die Formel geschrieben: [mm]\pi*\integral_{0}^{1}{(1+x)^{-4} dx}[/mm]
>  
> dann eine Substitution gemacht: t=1+x
>  
> [mm]\pi*\integral_{0}^{1}{(t)^{-4} dx}[/mm]


Substitution ist hier nicht nötig. Wenn Du es aber machen möchtest, musst Du das Differential auch mit substituieren - und die Integralgrenzen!

[mm]\pi*\integral_{1}^{2}{(t)^{-4} \;dt[/mm]

  

> Dann Integriert
>  
> [mm]\pi*|-1/3*x^{-3}|[/mm]  mit integrationsgrenzen 0 und 1 (weiss
> nicht wie man das hier schreibt, damit es korrekt angezeigt
> wird)


Wie gesagt, die Integrationsgrenzen müssen auch substituiert werden:

[mm] $V_x=-\bruch{\pi}{3}*\left[\bruch{1}{t^3} \right]_{1}^{2}$ [/mm]

[mm] $V_x=-\bruch{\pi}{3}*\left(\bruch{1}{2^3}-\bruch{1}{1^3} \right)$ [/mm]

[mm] $V_x=-\bruch{\pi}{3}*\left(-\bruch{7}{8} \right)=\bruch{7}{24}*\pi$ [/mm]




  

> Wenn ich das einsetze bekomme ich:
>  
> [mm]\pi*(-1/3)-(-1/8)[/mm]
>  
> = [mm]-\pi*5/24[/mm]
>  
> Kommt mir irgendwie merkwürdig vor?
>  
> Negatives Volumen?
>  
> Danke schonmal !
>  
> Gruß
>  
> Jan



LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]