Ring R injektiv als R-Modul < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:02 Mi 03.03.2010 | Autor: | SEcki |
Hallo,
Bei einer Beweisstartegie für die Klassifikation endlicher abelscher Gruppen kann man zu einem Punkt kommen, wo man die p-Gruppe klassifiziert. Dann nimmt man ein Element x höchster Ordnung q in der p-Gruppe A und möchte eine Zerlegung [m]A=\oplus B[/m] haben und Induktion anwenden. Dafür kann man A als [m]\IZ_q[/m] Modul auffassen. Dann ist [m]=\IZ_q[/m]. Nun sollte die Inklusion am besten einfach spalten, also [m]\IZ_q[/m] als [m]\IZ_q[/m]-Modul injektiv sein. Erste Frage: wieso ist das so? Ich seh gerade den Wald vor lauter Bäumen nicht.
Zweite Frage: R sollte doch auch immer als R-Modul injektiv sein, bzw. sogar [m]R^n[/m] - kann man das elegant zeigen? Brauch ich das Lemma von Zorn bei der Konstruktion? Ich brauche nen Schubs.
SEcki
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:18 Do 04.03.2010 | Autor: | felixf |
Moin SEcki,
> Bei einer Beweisstartegie für die Klassifikation endlicher
stammt die Strategie von dir, oder hast du die irgendwo her?
> abelscher Gruppen kann man zu einem Punkt kommen, wo man
> die p-Gruppe klassifiziert. Dann nimmt man ein Element x
> höchster Ordnung q in der p-Gruppe A und möchte eine
> Zerlegung [m]A=\oplus B[/m] haben und Induktion anwenden.
> Dafür kann man A als [m]\IZ_q[/m] Modul auffassen. Dann ist
> [m]=\IZ_q[/m]. Nun sollte die Inklusion am besten einfach
> spalten, also [m]\IZ_q[/m] als [m]\IZ_q[/m]-Modul injektiv sein. Erste
> Frage: wieso ist das so? Ich seh gerade den Wald vor lauter
> Bäumen nicht.
Ist denn [mm] $\IZ_q$ [/mm] wirklich injektiv als [mm] $\IZ_q$-Modul?
[/mm]
Ich vermute es ist einfacher, den Hauptsatz anders zu zeigen.
> Zweite Frage: R sollte doch auch immer als R-Modul injektiv
> sein, bzw. sogar [m]R^n[/m] - kann man das elegant zeigen? Brauch
> ich das Lemma von Zorn bei der Konstruktion? Ich brauche
> nen Schubs.
Das stimmt einfach im Allgemeinen nicht, ist $R$ etwa ein Integritaetsbereich mit Quotientenkoerper $K$, so ist der kleinste Untermodul von $K$, der injektiv ist, bereits $K$ selber. (Siehe hier.)
LG Felix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:38 Do 04.03.2010 | Autor: | felixf |
Moin SEcki,
> Bei einer Beweisstartegie für die Klassifikation endlicher
> abelscher Gruppen kann man zu einem Punkt kommen, wo man
> die p-Gruppe klassifiziert. Dann nimmt man ein Element x
> höchster Ordnung q in der p-Gruppe A und möchte eine
> Zerlegung [m]A=\oplus B[/m] haben und Induktion anwenden.
> Dafür kann man A als [m]\IZ_q[/m] Modul auffassen. Dann ist
> [m]=\IZ_q[/m]. Nun sollte die Inklusion am besten einfach
> spalten, also [m]\IZ_q[/m] als [m]\IZ_q[/m]-Modul injektiv sein. Erste
> Frage: wieso ist das so? Ich seh gerade den Wald vor lauter
> Bäumen nicht.
also [mm] $\IZ_q$ [/mm] ist als [mm] $\IZ_q$-Modul [/mm] tatsaechlich injektiv; das kann man leicht mit Hilfe des Baer-Kriteriums feststellen: ist [mm] $\varphi [/mm] : [mm] p^n \IZ_q \to \IZ_q$ [/mm] (mit $0 [mm] \le [/mm] n [mm] \le \log_p [/mm] q$) ein Homomorphismus, so kann man [mm] $\psi(1) [/mm] := [mm] \varphi(p^n) [/mm] / [mm] p^n$ [/mm] definieren (es muss [mm] $\varphi(p^n) \equiv [/mm] 0 [mm] \pmod{p^n}$ [/mm] gelten, da [mm] $\frac{q}{p^n} p^n \equiv [/mm] 0 [mm] \pmod{q}$ [/mm] ist und somit [mm] $\frac{q}{p^n} \varphi(p^n) [/mm] = 0 [mm] \in \IZ_q$).
[/mm]
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:12 Do 04.03.2010 | Autor: | SEcki |
Hallo,
Beide Antworten zusammen:
>> Bei einer Beweisstartegie für die Klassifikation endlicher
> stammt die Strategie von dir, oder hast du die irgendwo her?
Eigentlich aus meinem Algebra-Skript, aber auch was ich mir überlegt habe und im INet gefunden habe (eben ohne die Injektivität des Moduls [m]\IZ_q[/m]). Im Skript wird das quasi adhoc bewiesen, dass man die höchste Ordnung abspalten kann. Ich fand es aber nicht wirklich merkbar, also dachte ich mir: ich brauch nur zeigen, dass die Injektion spaltet. Und ich dachte, vielleicht geht es einfach.
Auch steht das im gleichen Wiki-Eintrag, dne du zitiert hast.
> Ich vermute es ist einfacher, den Hauptsatz anders zu zeigen.
Imo sind viele Sachen bei "meinem" Weg auch einfach griffig und verständlich.
> Das stimmt einfach im Allgemeinen nicht, ist $ R $ etwa ein Integritaetsbereich mit Quotientenkoerper $ K $, so ist der kleinste Untermodul von $ K $, der injektiv ist, bereits $ K $ selber.
Ah, okay.
> also [mm]\IZ_q[/mm] ist als [mm]\IZ_q[/mm]-Modul tatsaechlich injektiv; das
> kann man leicht mit Hilfe des
> Baer-Kriteriums
> feststellen: ist [mm]\varphi : p^n \IZ_q \to \IZ_q[/mm] (mit [mm]0 \le n \le \log_p q[/mm])
> ein Homomorphismus, so kann man [mm]\psi(1) := \varphi(p^n) / p^n[/mm]
> definieren (es muss [mm]\varphi(p^n) \equiv 0 \pmod{p^n}[/mm]
> gelten, da [mm]\frac{q}{p^n} p^n \equiv 0 \pmod{q}[/mm] ist und
> somit [mm]\frac{q}{p^n} \varphi(p^n) = 0 \in \IZ_q[/mm]).
Da muss ich noch einmal drüberschauen. Mir scheint es aber, dass man es wohl mit der Beweistechnik auch direkt beweisen kann.
EDIT: ich will ja nur Spaltung zeigen, dh ich habe den injektiven Gruppenhom. [m]\phi:\IZ_q\to A_p[/m], für den ich eine Abbildung [m]\rho:A_p\to \IZ_q,t\mapsto t*x[/m] mit [m]\rho\circ\phi=id[/m] - und das geht so: Ich kann leicht [m]\rho[/m] auf <x> defineiren (nämlich kanonische Umkehrung). Dann schmeiße ich zu <x> induktiv Erezuger [m]y_i[/m] hinzu (bis ich ganz [m]A_p[/m] erzeugen kann und so, dass die [m]y_i[/m] nicht im Spann der vorherigen sind). Dann gibt es ein k (da endliche gruppe), so dass das neue [m]y_i[/m] darstellbar ist als [m]k*y_i=m*x[/m]. Dann setze [m]\rho[/m] fort durch [m]\rho(y)=m/k[/m], wobei man sich im Fall [m]m\neq 0[/m] noch klar machen muss, warum dies wohldef. ist - das muss ich noch ausführen, ist aber im Wesentlichen warum man obige Ideale fortsetzen kann. Da nämlich die Ordnung von x maximal ist, muss k eine entsprechende Primzahlpotenz sein.
SEcki
|
|
|
|