www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Residuen herausrechnen
Residuen herausrechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuen herausrechnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:01 So 12.07.2009
Autor: LoKiaK

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich hoffe, man verzeiht mir meine Schusseligkeit, ich hab den Beitrag schon mal gepostet, allerdings in der Rubrik Numerik. Deshalb poste ich ihn hiermit erneut, diesmal in der richtigen Rubrik. Es geht um Folgendes:

Ich habe in einem Skalarfeld, das sich als arctan(y,x) darstellt, eine Singularität im Ursprung. Gleichzeitig scheint sich dort, da das Wegintegral um die Singularität nicht verschwindet, der rotierende Anteil des Vektorfeldes, das sich als $ [mm] \nabla [/mm] $ arctan(y,x) darstellt, zu befinden. Mein Problem sind diese Definitionslücken, da ich einen iterativen Algorithmus(Gerchberg-Saxton) verwende, und dieser seine Probleme mit derartigen Stellen hat. Mein Ansatz, diese Stellen der Rotation mittels Helmholtz-Zerlegung herauszurechnen, scheitert wohl an besagten Defintionslücken, da mein Gebiet dadurch nicht einfach zusammenhängend
ist, was es sein muss, um Helmholtz anwenden zu können. Deshalb folgende Fragen:

1.)Funktioniert der Ansatz über Helmholtz vllt doch, obwohl sich der rotierende Anteil in einem Punkt konzentriert, in dem das Feld gar nicht definiert(nicht zusammenhängend) ist? Falls die Helmholtz-Zerlegung nicht möglich sein sollte, was gibt es für Alternativen, um die Singularitäten/rotierenden Anteile herauszurechnen?
2.)Ich habe hier im Forum gelesen(https://www.vorhilfe.de/forum/wirbelfreies_feld/t389352), dass man im dreidimensionalen trotz Singularitäten ein zusammenhängendes Gebiet hat. Oder gilt das nur für den Fall, dass ich eine Singularität in einer Dimension habe, die ich in den restlichen umgehen kann?
3.)Welche Art von Singularität liegt hier vor? (hebbar, Polstelle, wesentliche Singularität)

Es wäre nett, wenn sich jemand meiner annehmen könnte!

Gruss & Dank!!!

        
Bezug
Residuen herausrechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Di 14.07.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]