www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Relative Genauigkeit
Relative Genauigkeit < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relative Genauigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Di 02.11.2004
Autor: Wurzelpi

Hallo!

Ich hänge bei einer Numerik-Aufgabe.

Mit einem Messgerät, welche nur Werte mit zwei Nachkommastellen liefert, wurde eine Grösse x aus den reellen Zahlen zu 1,01 gemessen.
Nun wird der Wert [mm] y:=x^2-1 [/mm] mit einer rel. Genauigkeit von 1% benötigt.
Benutze die Konditionszahl, um zu sehen, ob die Messung xon x schon genau genug ist.
Welche Messgenauigkeit muss nach dem jetzigen Informationsstand gefordert werden, um die benötigte Genauigkeit von y zu erhalten?

Kann mir bitte da mal einer erklären, wie ich da rangehen soll?

Bisher habe ich mal die Konditionszahl berechnet.
Da y diff´bar ist, gilt:
cond(y)=cond(f(x)) = |x|*|f´(x)| *1/f(x) = [mm] |2x^2|/(x^2+1) [/mm]

Jetzt weiss ich aber nicht, wie es weitergeht.



        
Bezug
Relative Genauigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Di 02.11.2004
Autor: Wurzelpi

Folgendes habe ich mir noch überlegt:

Der genaue Werte von x ist nicht bekannt, er wird durch die Messungenauigkeit zu x*=1.01 gemessen.
Statt y(x) erhält man y(x*), erhält also einen rel. Fehler = .... , welchen man über die Konditionszahl
bestimmen (annähern) kann, dabei ist die Konditionszahl möglichst gut abzuschätzen.

Der rel. Fehler berechnet sich durch [mm] |y(x)-y(x^*)|/|y(x)|=|x^2-1,02|/ Dies soll aber nun in Beez. zu cond besttimmt werden!
Es ist noch zu klären, wie gut die Messgenauigkeit sein muss, damit also ein besseres x* vorliegt und somit der rel. Fehler in y(x*) so klein wie gewünscht wird (ebenfalls über Konditionszahl, wie oben).

Leider finde ich aber keine passenden Abschätzungen!


Bezug
                
Bezug
Relative Genauigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:44 Mi 03.11.2004
Autor: mathemaduenn

Hallo Wurzelpi,
> Der genaue Werte von x ist nicht bekannt, er wird durch die
> Messungenauigkeit zu x*=1.01 gemessen.
>  Statt y(x) erhält man y(x*), erhält also einen rel. Fehler
> = .... , welchen man über die Konditionszahl
>  bestimmen (annähern) kann, dabei ist die Konditionszahl
> möglichst gut abzuschätzen.

Ja, die Abschätzung der Konditionszahl erhält man indem man 1,01 einsetzt.

> Der rel. Fehler berechnet sich durch
> [mm]\bruch{|y(x)-y(x^*)|}{|y(x)|}=\bruch{|x^2-1,02|}{|x^2-1|} [/mm]

Leider kennt man den "wahren" Wert x nicht weshalb dieser Ansatz zum "Zahlenwerte berechnen" nicht weiterbringt.
gruß
mathemaduenn

Bezug
        
Bezug
Relative Genauigkeit: Konditionszahl
Status: (Antwort) fertig Status 
Datum: 10:36 Mi 03.11.2004
Autor: mathemaduenn

Hallo Wurzelpi,
Du hast einen rel. Fehler in x multiplizierst ihn mit der Konditionszahl und erhälst den relativen Fehler in y.
[mm]cond_f(x) = \bruch{|x|*|f^'(x)|}{|f(x)|} = \bruch{|2x^2|}{|(x^2-1)|}[/mm] (kleiner Vorzeichenfehler)
Wenn Du hier 1,01 für x einsetzt erhälst Du nat. nur eine Näherung erster Ordnung für den rel. Fehler in y.
gruß
mathemaduenn



Bezug
                
Bezug
Relative Genauigkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 13:03 Mi 03.11.2004
Autor: Joergi

Wir haben 1.01 eigesetzt und erhalten [mm] \bruch{x}{f(x)}*f^{'}(x) = \bruch{2x^2}{x^2-1} = \bruch {2*(1.01)^2}{(1.01)^2-1} = \bruch{2.04}{0.02} = 102[/mm]

Was sagt uns diese Zahl und wie kann man damit weiterarbeiten??

Bezug
                        
Bezug
Relative Genauigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mi 03.11.2004
Autor: mathemaduenn

Hallo Joergi,
Das bedeutet der relative Fehler in y ist ungefähr 102 mal so groß wie der relative Fehler in x.
Jetz müsstet ihr also den relativen Fehler in x ausrechnen und schauen ob der mit 102 multipliziert über 1% liegt. Wird wohl so sein.
gruß
mathemaduenn

Bezug
                                
Bezug
Relative Genauigkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 03.11.2004
Autor: Joergi

Aber der relative Fehler berechnet sich ja durch [mm] |\bruch{x^{*} - x}{x}|[/mm]. Aber wir kennen nur [mm] x^{*}[/mm]. Wie soll man damit denn den relativen Fehler ausrechnen?
Wo bekomme ich das x her??

Bezug
                                        
Bezug
Relative Genauigkeit: rel.Fehler von x
Status: (Antwort) fertig Status 
Datum: 20:31 Mi 03.11.2004
Autor: mathemaduenn

Hallo Joergi,
Du kennst dieses "wahre" x nicht ,aber Du kannst Dir überlegen wie groß der Fehler maximal sein kann. Abschätzen eben.
Alles klar?
gruß
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]