Reihenprodukte konvergent < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 03:27 Sa 06.08.2011 | Autor: | kushkush |
Aufgabe | Man beweise oder widerlege:
1 .Aus [mm] $\sum_{n\in\IN} a_{k}$ [/mm] konvergent folgt [mm] $\sum_{n\in\IN} a_{k}^{2}$ [/mm] konvergent
2. Aus [mm] $\sum_{n\in \IN} a_{k}$ [/mm] absolut konvergent folgt [mm] $\sum_{n \in \IN} a_{k}^{2}$ [/mm] absolut konvergent |
Hallo,
1. Stimmt nicht, mit [mm] $a_{k}:= \frac{(-1)^{n}}{\sqrt{n}}$ [/mm] konvergiert die Reihe, aber daraus folgt nicht dass [mm] $\sum a_{k}^{2} [/mm] = [mm] \sum \frac{1}{n}$ [/mm] die harmonische Reihe konvergiert.
2.Sei [mm] $a_{n} [/mm] := [mm] \sum a_{k}$ [/mm] , [mm] $c_{n}:= \sum a_{k}^{2}$ [/mm] mit $ C = [mm] \sum|a_{k}^{2}| [/mm] = [mm] A^{2}$ [/mm] ist der Summenwert des Absolutbetrags gemeint.
[mm] $\forall \epsilon> [/mm] 0 \ [mm] \exists [/mm] N [mm] \in \IN [/mm] : [mm] |(\sum a_{k}) [/mm] ( [mm] \sum a_{k} [/mm] ) - lim [mm] c_{n} [/mm] | < [mm] \epsilon [/mm] \ [mm] \forall n\ge [/mm] N $
mit
[mm] $\sum a_{k} [/mm] < [mm] \epsilon [/mm] \ [mm] \forall n\ge [/mm] N$ gilt dann für [mm] $n\ge [/mm] 2N:$
[mm] $|\sum c_{k} [/mm] - lim [mm] c_{n} [/mm] | < [mm] 2\cdot [/mm] A [mm] \cdot \epsilon [/mm] + [mm] \epsilon [/mm] $
Ist das so richtig?
Danke für jegliche Hilfestellung!
Gruss
kushkush
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:22 Sa 06.08.2011 | Autor: | Teufel |
Hi!
1)
Jo, das Gegenbeispiel wäre mir auch zuerst eingefallen.
2)
Hm ne, so ganz stimmt das nicht. Oder ich durchblicke die Notation nicht so ganz.
Warum ist [mm] a_k=\summe_{i=1}^{n}a_i [/mm] denn eine Folge? [mm] \summe_{i=1}^{n}a_i [/mm] ist doch eine feste Zahl (nach Voraussetzung, da die Reihe ja konvergiert). Aber [mm] \summe_{i=1}^{n}a_i^2 [/mm] muss nicht unbedingt konvergieren, das müssen wir ja erst zeigen. Aber du setzt schon [mm] \summe_{i=1}^{n}a_i=C=A^2 [/mm] und rechnest damit wie mit reellen Zahlen.
Aber du kannst das so machen: Du weißt, dass [mm] \summe_{i=1}^{n}|a_i| [/mm] konvergiert. Damit ist [mm] |a_i| [/mm] eine Nullfolge. Dann gibt es einen Index N, sodass [mm] |a_i|<1 [/mm] ist für alle i>N. Ab diesem N gilt dann [mm] |a_i|>|a_i|*|a_i|=a_i^2.
[/mm]
Hilft dir das?
|
|
|
|
|
Moin,
> 2. Aus [mm]\sum_{n\in \IN} a_{k}[/mm] absolut konvergent folgt
> [mm]\sum_{n \in \IN} a_{k}^{2}[/mm] absolut konvergent
Sei dazu [mm] C:=\sum_{n\in \IN} |a_{k}|. [/mm] Dann
[mm] C^2=\left(\sum_{n\in \IN} |a_{k}|\right)^2=\sum_{n\in \IN} a_{n}^2+\underbrace{\sum_{i\neq j} |a_{i}a_{j}|}_{\geq0, =:D}
[/mm]
Es folgt [mm] \sum_{n\in \IN} a_{n}^2=C^2-D<\infty
[/mm]
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:25 Sa 06.08.2011 | Autor: | kushkush |
Hallo Teufel und kamaleonti,
> LG
Danke!!!
Gruss
kushkush
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:39 So 07.08.2011 | Autor: | kushkush |
Hallo ,
für zwei unterschiedliche, absolute konvergente Reihen:
Sei [mm] $a_{n} [/mm] := [mm] \sum a_{k}, b_{n}:= \sum b_{k}$ [/mm] absolut konvergent. Dann ist [mm] $a_{n}$ [/mm] beschränkt mit $lim [mm] a_{n} [/mm] = a$ und $lim [mm] b_{n} [/mm] = b$ dann gilt :
[mm] $|a_{n}| \le [/mm] M \ [mm] \forall [/mm] n [mm] \in \IN$ [/mm] dann gilt auch [mm] $\forall \epsilon [/mm] > 0 [mm] \exists [/mm] N [mm] \in \IN [/mm] $: $| [mm] a_{n} [/mm] - a| < [mm] \sqrt{\epsilon} [/mm] $ und [mm] $|b_{n} [/mm] - b| < [mm] \frac{\sqrt{\epsilon}}{M} [/mm] \ [mm] \forall [/mm] n [mm] \ge [/mm] N$
Dann ist : [mm] $\sum |a_{k}b_{k}| [/mm] = [mm] \sum |a_{k}| [/mm] | [mm] b_{k}| \le \sum [/mm] M [mm] |b_{k}| [/mm] = M [mm] \sum |b_{k}| \le \epsilon [/mm] $
Ist das so OK?
Gruss
kushkush
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:36 Mo 08.08.2011 | Autor: | fred97 |
> Hallo ,
>
> für zwei unterschiedliche, absolute konvergente Reihen:
>
> Sei [mm]a_{n} := \sum a_{k}, b_{n}:= \sum b_{k}[/mm] absolut
> konvergent.
Das ist ja eine völlig bescheuerte Notation ! Lernt man das auf den Weihnachtsinseln ?
> Dann ist [mm]a_{n}[/mm] beschränkt mit [mm]lim a_{n} = a[/mm]
> und [mm]lim b_{n} = b[/mm] dann gilt :
>
> [mm]|a_{n}| \le M \ \forall n \in \IN[/mm] dann gilt auch [mm]\forall \epsilon > 0 \exists N \in \IN [/mm]:
> [mm]| a_{n} - a| < \sqrt{\epsilon} [/mm] und [mm]|b_{n} - b| < \frac{\sqrt{\epsilon}}{M} \ \forall n \ge N[/mm]
>
> Dann ist : [mm]\sum |a_{k}b_{k}| = \sum |a_{k}| | b_{k}| \le \sum M |b_{k}| = M \sum |b_{k}| \le \epsilon[/mm]
>
>
> Ist das so OK?
Nein , überhaupt nicht. Man weiß gar nicht, was man dazu sagen soll.
Du kommst mir vor, wie ein kleiner Jungen, der mit einer geladenen Pistole spielt, der aber meint mit Lego ein Modellflugzeug zu bauen. Nachdem Du Dir schon dreimal ins Knie geschossen hast, hast Du immer noch nicht gemerkt, dass etwas gewaltig schief läuft, und fragst: "ist mein Flugzeug so O.K. ?"
Wenn ich es richtig sehe, willst Du zeigen:
sind [mm] \summe_{i=1}^{\infty}a_i [/mm] und [mm] \summe_{i=1}^{\infty}b_i [/mm] absolut konvergent, so ist auch [mm] \summe_{i=1}^{\infty}a_ib_i [/mm] absolut konvergent.
[mm] (b_i) [/mm] ist eine Nullfolge, somit gibt es ein N [mm] \in \IN [/mm] mit: [mm] |b_i| \le [/mm] 1 für i>N.
Dann gilt:
[mm] |a_ib_i| \le |a_i| [/mm] für i>N.
Nun bemühe das Majorantenkriterium.
FRED
>
>
>
>
>
> Gruss
> kushkush
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:35 Mo 08.08.2011 | Autor: | kushkush |
Hallo fred,
> nein
> Wenn ich es richtig sehe, willst Du zeigen:
> Majorante
Danke!!
Gruss
kushkush
|
|
|
|