www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Reihenkonv mit quotientenkrit?
Reihenkonv mit quotientenkrit? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonv mit quotientenkrit?: Quotientenkriterium
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 16.11.2005
Autor: willymathe

Hallo an euch alle,
ich bin langsam dabei durchzusteigen wie man die Reihenkonvergenz bzw -divergenz nachweißt, nur bei einer Aufgabe komm ich nicht drauf. Vielleicht könnte mir ja einer von euch weiterhelfen:
Wie zeige ich ob die Reihe  [mm] \summe_{i=0}^{n}n^k*x^n [/mm]    (für k Element N, und x Element R mit |x| < 1)
konvergiert?

Ich habe es mit dem Quotientenkriterium probiert, komme aber dann auf kein Ergebnis, es kommt dann raus:
[mm] (n+1)^k/n^k [/mm] = ???
Ich kann hier leider nichts rauslesen, ob es ">1" oder "<1" ist.

Vielen vielen dank schonmal an alle.
Bis dann, Willy

        
Bezug
Reihenkonv mit quotientenkrit?: Kleiner Fehler von mir
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Mi 16.11.2005
Autor: willymathe

Hallo ich hab leider einen kleiner Fehler in meiner Frage gemacht.
Wenn ich durchrechne kommt raus:

[mm] x*(n+1)^k/n^k [/mm]

statt wie ich zuerst geschrieben habe [mm] (n+1)^k/n^k. [/mm] Dann wäre es klar, dass es ">1" ist.
Tut mir sehr Leid für den Schreibfehler

Bezug
        
Bezug
Reihenkonv mit quotientenkrit?: richtig
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 16.11.2005
Autor: mathmetzsch

Hallo,

also das Quotientenkriterium anzuwenden ist hier richtig.

Gemäß dem Quotientenkriterium gilt

[mm] \bruch{a_{n+1}}{a_{n}}=(\bruch{n+1}{n})^{k}*x\to [/mm] x

da ja [mm] (\bruch{n+1}{n})=1+\bruch{1}{n}\to [/mm] 1 strebt und dauernd positiv ist. Die Reihe ist daher - und dies ohne Rücksicht auf den Wert von k - konvergent, falls x<1, divergent falls x>1. Im Fall x=1 haben wir die harmonische Reihe vor uns und die ist bekanntermaßen divergent.

VG mathmetzsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]