www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Reihen, Folgen
Reihen, Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen, Folgen: Frage
Status: (Frage) beantwortet Status 
Datum: 00:01 Fr 26.11.2004
Autor: mathenullhoch2

Hallo Leute ich habe da folgende Frage:

Zeigen Sie:

[mm] \summe_{k=1}^{n}k*k! [/mm] = (n+1)!-1

Also ich weis das ich [mm] \summe_{k=1}^{n}k [/mm] als  [mm] \bruch{n*(n+1)}{2} [/mm] darstellen kann. Was ist aber mit k!

Kann ich das  [mm] \summe_{k=1}^{n}k! [/mm]

als [mm] \bruch{n!*(n+1)!}{2} [/mm] darstellen, oder liege ich da falsch.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihen, Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Fr 26.11.2004
Autor: Marcel

Hallo mathenullhoch2!
[willkommenmr]!

> Hallo Leute ich habe da folgende Frage:
>  
> Zeigen Sie:
>  
> [mm]\summe_{k=1}^{n}k*k! = (n+1)!-1[/mm]
>  
> Also ich weis das ich [mm]\summe_{k=1}^{n}k[/mm] als  
> [mm]\bruch{n*(n+1)}{2}[/mm] darstellen kann.

[ok] (Das brauchst du bei der Aufgabe aber gar nicht!)

> Was ist aber mit k!
>  
> Kann ich das  [mm]\summe_{k=1}^{n}k! [/mm]
>  
> als [mm]\bruch{n!*(n+1)!}{2}[/mm] darstellen, oder liege ich da
> falsch.

Da liegst du falsch: Gegenbeispiel für $n=3$:
[mm]\summe_{k=1}^{3}k!=1+2+6=9[/mm], aber
[mm]\frac{3!*4!}{2}=\frac{6*24}{2}=72[/mm]

Vielleicht versuchst du dich bei der Aussage:
[mm]\summe_{k=1}^{n}k*k!= (n+1)!-1[/mm]
mal an einem Induktionsbeweis. Damit solltest du sehr schnell ans gewünschte Ziel gelangen. :-)

Liebe Grüße,
Marcel

Bezug
                
Bezug
Reihen, Folgen: Frage
Status: (Frage) beantwortet Status 
Datum: 00:53 Fr 26.11.2004
Autor: mathenullhoch2

Bei der Induktion komme ich dann zum Schluß

auf  [mm] \summe_{k=1}^{n+1}k*k! [/mm] = ((n+1)+1)! -1= (n(1+1))!-1


wie zeige ich jetzt ,dass es dasselbe ist wie

[mm] \summe_{k=1}^{n}k*k! [/mm] + [mm] \summe_{k=1}^{1}k*k! [/mm]


    

Bezug
                        
Bezug
Reihen, Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:59 Fr 26.11.2004
Autor: Marcel

Hallo mathenullhoch2,

> Bei der Induktion komme ich dann zum Schluß
>  
> auf  [mm]\summe_{k=1}^{n+1}k*k! = ((n+1)+1)! -1= (n(1+1))!-1[/mm]

Das verstehe ich nicht ganz:
Das hier:
[mm]\summe_{k=1}^{n+1}k*k! = ((n+1)+1)! -1[/mm]
ist [ok] (und damit bist du auch schon fertig), aber:
$((n+1)+1)! [mm] -1\red{\not=} [/mm] (n(1+1))!-1$. Sondern:
$((n+1)+1)! -1=(n+2)!-1$

Ich schreibe dir mal das notwendige auf:
Test für $n=1$ liefert das Okay für den Induktionsanfang!

Induktionsvoraussetzung (I.V.):
Es gelte für ein $n [mm] \in \IN$: $\summe_{k=1}^{n}k*k! [/mm] = (n+1)!-1$.

Was wollen wir nun zeigen?
[mm] $(\star)$ [/mm] Zu zeigen ist, dass dann für $n+1$ folgt, dass die Gleichung [mm] \summe_{k=1}^{(n+1)}k*k! = ((n+1)+1)!-1[/mm] (bzw.: [mm] \summe_{k=1}^{(n+1)}k*k! = (n+2)!-1[/mm]) stimmt.

Also: Induktionsschritt:
$n [mm] \mapsto [/mm] (n+1)$:
Es gilt:
[m] \summe_{k=1}^{(n+1)}k*k! =\left(\summe_{k=1}^{n}k*k!\right) +(n+1)*(n+1)!\stackrel{I.V.}{=}\underbrace{(n+1)!-1}_{wegen\;I.V.}+(n+1)*(n+1)!=(n+1)!(1+(n+1))-1\underbrace{=}_{(\star_1),siehe\;unten}((n+1)+1)!-1[/m]
(bzw. $=(n+2)!-1$).

Fertig, weil wir [mm] $(\star)$ [/mm] gezeigt haben! :-)

PS: Beachte dabei:
[mm] $(\star_1)$ [/mm] $(n+2)!=(n+2)(n+1)!=((n+1)+1)(n+1)!_$.
Im Beweis steht:
$(n+1)!(1+(n+1))_$, und durch umformen folgt:
$(n+1)!(1+(n+1))=(n+1)!((n+1)+1)=((n+1)+1)(n+1)!_$ und dann habe ich [mm] $(\star_1)$ [/mm] darauf angewendet!

Viele Grüße,
Marcel

Bezug
                                
Bezug
Reihen, Folgen: Frage
Status: (Frage) beantwortet Status 
Datum: 08:29 Fr 26.11.2004
Autor: mathenullhoch2

Bei Induktionsanfang
kriege ich für das n=1

(1+1)!-1  also 2!-1

Du schreibst für n=1

(n+1)(n+1)!

Das verstehe ich nicht ganz.

Könntest du es mir vielleicht erklären

Bezug
                                        
Bezug
Reihen, Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Fr 26.11.2004
Autor: Marcel

Hallo,

> Du schreibst für n=1

> (n+1)(n+1)!

Wo soll das denn stehen? Ich habe nur geschrieben, dass, wenn man die Behauptung für n=1 überprüft (was ich aus Faulheit nirgends getan habe), die Behauptung dann stimmt.

Viele Grüße,
Marcel

Bezug
                                                
Bezug
Reihen, Folgen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Fr 26.11.2004
Autor: mathenullhoch2

Danke marcel. Habe Die Aufgabe schon gelösst:-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]