Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 01:26 Di 31.08.2010 | Autor: | Pacapear |
Hallo zusammen!
Ich hab nur ganz kurz eine ziemlich doofe Frage zur Bezeichnung bei Reihen.
Also im Königsberger I steht, dass man eine Folge [mm] (a_n) [/mm] komplexer Zahlen gegeben hat und dass mit [mm] s_1=a_1, s_2=a_1+a_2,s_3=a_1+a_2+a_3,...,s_n=a_1+a_2+...+a_n=\summe_{k=1}^{n}a_k [/mm] der Folge [mm] (a_n) [/mm] eine weitere Folge [mm] (s_n) [/mm] zugeordnet wird. Die Folge [mm] (s_n) [/mm] nennt man Reihe und man schreibt für sie [mm] \summe_{k=1}^{\infty}a_k.
[/mm]
Das ist mir soweit klar.
Und dann steht da, dass die Zahlen [mm] a_n [/mm] Glieder der Reihe und die Zahlen [mm] s_n [/mm] die Partialsummen der Reihe heißen.
Das verwirrt mich etwas, sind die [mm] a_n [/mm] nicht eigentlich die Glieder der Folge [mm] (a_n). [/mm] Und die Glieder der Folge [mm] (s_n) [/mm] sind doch die Zahlen [mm] s_n, [/mm] und da [mm] (s_n) [/mm] eine Reihe ist, müssten dann die Zahlen [mm] s_n [/mm] nicht die Glieder der Reihe sein, also genau das, was hier als Partialsummen bezeichnet wird?
Irgendwie verwirrt mich das grad
LG Nadine
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:04 Di 31.08.2010 | Autor: | reverend |
Hallo Nadine,
ich stelle mich mal auf Deine Seite. Die Verwirrung teile ich, um nicht zu sagen: m.E. hast Du Recht.
Mal sehen, gegen wen wir jetzt spielen.
Mannschaftswahl, Leute!
Grüße
reverend
|
|
|
|
|
> Also im Königsberger I steht, dass man eine Folge [mm](a_n)[/mm]
> komplexer Zahlen gegeben hat und dass mit [mm]s_1=a_1, s_2=a_1+a_2,s_3=a_1+a_2+a_3,...,s_n=a_1+a_2+...+a_n=\summe_{k=1}^{n}a_k[/mm]
> der Folge [mm](a_n)[/mm] eine weitere Folge [mm](s_n)[/mm] zugeordnet wird.
> Die Folge [mm](s_n)[/mm] nennt man Reihe und man schreibt für sie
> [mm]\summe_{k=1}^{\infty}a_k.[/mm]
> Das ist mir soweit klar.
>
> Und dann steht da, dass die Zahlen [mm]a_n[/mm] Glieder der Reihe
> und die Zahlen [mm]s_n[/mm] die Partialsummen der Reihe heißen.
Hallo,
ja, im Forster steht das auch so.
Diese Benennung ist wohl allgemein üblich.
Ich finde sie in dem Moment, in dem man sich "Reihe" als Folge von Partialsummen vergegenwärtigt, auch nicht gut.
Ich sage dann zur Deutlichkeit für mich und etwaige Schüler lieber:
"die [mm] a_n [/mm] sind die Glieder der der Reihe [mm] \summe a_n [/mm] zugrundeliegenden Folge."
Wenn man allerdings so ganz platschbummm "Reihe" als unendliche Summe auffaßt (ich denk' da durchaus nicht immer an Partialsummen!), denn ist die Benennung ganz in Ordnung.
Ich denke mal, daß wir kleinen Lichter wenig gegen die Bezeichnung ausrichten können und sie einfach schlucken müssen.
Es kommt halt darauf an, daß man weiß, was zu tun ist, wenn man das fünfte Glied der Reihe [mm] \summe_{n=1}^{\infty}a_n [/mm] sagen soll und die fünfte Partialsumme.
Gruß v. Angela
>
> Das verwirrt mich etwas, sind die [mm]a_n[/mm] nicht eigentlich die
> Glieder der Folge [mm](a_n).[/mm] Und die Glieder der Folge [mm](s_n)[/mm]
> sind doch die Zahlen [mm]s_n,[/mm] und da [mm](s_n)[/mm] eine Reihe ist,
> müssten dann die Zahlen [mm]s_n[/mm] nicht die Glieder der Reihe
> sein, also genau das, was hier als Partialsummen bezeichnet
> wird?
>
> Irgendwie verwirrt mich das grad
>
> LG Nadine
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:44 Di 31.08.2010 | Autor: | reverend |
Hallo Angela,
> Ich denke mal, daß wir kleinen Lichter wenig gegen die
> Bezeichnung ausrichten können und sie einfach schlucken
> müssen.
Klar. Manchmal wäre eine etwas stringentere Nomenklatur aber schon hilfreich.
> Es kommt halt darauf an, daß man weiß, was zu tun ist,
> wenn man das fünfte Glied der Reihe
> [mm]\summe_{n=1}^{\infty}a_n[/mm] sagen soll und die fünfte
> Partialsumme.
Das Problem taucht ja vor allem auf, wenn man nur das fünfte Glied der Reihe sagen soll - und eben nicht die fünfte Partialsumme gemeint ist.
Nicht jede Konvention ist sinnvoll, dennoch mag sie der Verständigung dienen, solange sie von allen anerkannt wird. Diese hier ist jedenfalls schon seit langem ein steter Quell des Missverständnisses.
Liebe Grüße
reverend
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:41 Mi 01.09.2010 | Autor: | Pacapear |
Vielen Dank für eure Antworten, jetzt bin ich beruhigt
LG Nadine
|
|
|
|