www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Regel für Symmetrie bei e-Funk
Regel für Symmetrie bei e-Funk < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regel für Symmetrie bei e-Funk: Frage
Status: (Frage) beantwortet Status 
Datum: 22:02 Fr 20.05.2005
Autor: Buba

Ich soll für ein Referat eine Regel für die Symmetrie von e-Funktionen  aufstellen.
Im Unterricht haben wir bis jetzt nur zwei unsymmetrische und zwei punktsymmetrische behandelt. Worin liegen diese Unterschiede begründet?
Meine Vermutung ist, dass es mit der Exponenten und den jeweiligen Vorzeichen zu tun hat. Mein Lösungsansatz wäre, möglichst viele Funktionen zu diskutieren und die Gemeinsamkeiten sozusagen "empirisch" aufzudecken.
Bis jetzt habe ich dies gescheut, da es mit sehr viel Arbeit verbunden ist (Ableitungen etc.).
Wenn es einen besseren, leichteren Weg gibt wäre ich über eine Antwort sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt




        
Bezug
Regel für Symmetrie bei e-Funk: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Fr 20.05.2005
Autor: Max

Hallo Sebastian,

warum musst du die Ableitung berechnen? Soweit ich weiß läßt sich die Symmetrie genausogut an der Funktion selbst erkennen. ZB erkennt man MBSymmetrie zur $y$-Achse daran, dass für alle [mm] $x\in [/mm] D$ gilt: $f(x)=f(-x)$.

Gruß Max


Bezug
        
Bezug
Regel für Symmetrie bei e-Funk: Antwort auf die Frage
Status: (Antwort) fertig Status 
Datum: 23:44 Fr 20.05.2005
Autor: nobsy

Hallo,
man muss die Funktionstypen ein wenig klassifizieren und dann geht es relativ einfach.
1. [mm] f(x)=c*e^{g(x)} [/mm] ist genau dann achsensymmetrisch zur y-Achse, wenn es g(x) ist, wobei c=konstant.
2. [mm] f(x)=c*e^{g(x)} [/mm] kann für c ungleich null nie punktsymmetrisch zum Ursprung sein.
3. [mm] f(x)=g(x)*e^x [/mm] ist immer unsymmetrisch, wenn g(x) keine Exponentialfunktion enthält.
Ich hoffe, das genügt fürs erste.
Norbert

[edit] wenn der Exponent mehr als ein Zeichen enthält (wie bei g(x)), muss man ihn in [mm] $\{ \}$ [/mm] geschleifte Klammern setzen.


Bezug
                
Bezug
Regel für Symmetrie bei e-Funk: [edit]
Status: (Frage) beantwortet Status 
Datum: 10:22 Sa 21.05.2005
Autor: Buba

Vielen Dank für eure schnellen Antworten!

Ich habe nur Probleme sie auf meine Funktionen anzuwenden.

Norberts dritte Funktionsklasse sieht meinen Funktionen am ähnlichsten.
[mm]f(x)=g(x).e^x[/mm]

Jedoch sind zwei von diesem Typus laut Kurvendikssion punktsymmetrisch.
Ich versuche sie mal abzutippen, vielleicht habe ich ja irgendwo einen Denkfehler:

[mm] $e^{-x^2}*(x^2)$ [/mm] ; [mm] $e^{-0,5x^2}*(x)$ [/mm]

Meine unsymmetrischen Funktionen:

[mm] $e^{2x}*(x-2)$ [/mm] ; [mm] $e^{0,5x-1}*(2x-6)$ [/mm]

Liebe Grüsse Sebastian

[edit] den Formeditor benutzt!

Bezug
                        
Bezug
Regel für Symmetrie bei e-Funk: Symmetrien
Status: (Antwort) fertig Status 
Datum: 11:29 Sa 21.05.2005
Autor: Loddar

Hallo Sebastian!


> Jedoch sind zwei von diesem Typus laut Kurvendiskussion
> punktsymmetrisch.
> Ich versuche sie mal abzutippen, vielleicht habe ich ja
> irgendwo einen Denkfehler:
>  
> [mm]e^-x^2*(x^2)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Lautet diese Funktion $f(x) \ = \ x^2 * e^{-x^2}$ ??

Diese Funktion ist achsen-symmetrisch zur y-Achse, da ja hier gilt:

${\red{f(-x)} \ = \ (-x)^2 * e^{-(-x)^2} \ = \ (-1)^2*x^2 * e^{-(-1)^2*x^2} \ = \ x^2 * e^{-x^2} \ = \ \red{f(x)}$



>[mm]e^-0,5x^2*(x)[/mm]

Bei der Funktion $f(x) \ = \ [mm] x*e^{-0,5x^2}$ [/mm] liegt Punktsymmetrie zum Ursprung vor. Denn hier gilt ja (bitte selber rechnen):

[mm] $\red{-f(-x)} [/mm] \ = \ - [mm] \left[(-x) * e^{-0,5*(-x)^2}\right] [/mm] \ = \ ... \ = \ [mm] \red{f(x)}$ [/mm]


[Dateianhang nicht öffentlich]



> Meine unsymmetrischen Funktionen:
>  
> e^2x*(x-2) ; [mm]e^0,5x-1*(2x-6)[/mm]

[mm] $f_1(x) [/mm] \ = \ [mm] (x-2)*e^{2x}$ [/mm]   bzw.   [mm] $f_2(x) [/mm] \ = \ [mm] (2x-6)*e^{0,5x-1}$ [/mm]  ??

[ok] Da hast Du Recht: bei diesen beiden Funktionen liegt jeweils keine Symmetrie vor.


[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
Regel für Symmetrie bei e-Funk: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Sa 21.05.2005
Autor: Buba

Vielen Dank für eure Hilfe!!!

Ich habe es endlich verstanden und bin somit ein großes Stück weiter gekommen.

Sebastian

Bezug
                                
Bezug
Regel für Symmetrie bei e-Funk: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Sa 21.05.2005
Autor: nobsy

Die punktsymmetrischen Funktionen fallen nicht unter die von mir genannten Kategorien.
f(x)=punktsymm(x).e^symm(x)
ist immer punktsymmetrisch. Das ist auch gleichzeitig die einzige Möglichkeit für eine punktsymmetrische e-Funktion.
Norbert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]