www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Transformationen" - Rect()transformiert:Gewichtung
Rect()transformiert:Gewichtung < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rect()transformiert:Gewichtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Mo 04.04.2016
Autor: elektroalgebra93

Hallo,

Ich schon wieder:

Gegeben:
s1= [mm] rect(\bruch{t}{2T}) [/mm]

[mm] s2=rect(\bruch{t}{T}) [/mm]

s=s1 * s2 (multiplikation!)
=> in Frequenzbereich transformiert werden

Dann kommt wieder ein rect raus, mit der Höhe 1, mit den Grenzen :
[mm] \bruch{-T}{2} [/mm] bis [mm] \bruch{T}{2} [/mm]

Fourier transformierte:
Kommt eine Si Funktion raus, mit den Grenzen :
[mm] \bruch{-1}{T} [/mm] bis [mm] \bruch{1}{T} [/mm]
ABER, was ist mit der Höhe ?
Ist die 1, oder T ?


Vielen dank
Liebe Grüsse


        
Bezug
Rect()transformiert:Gewichtung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mo 04.04.2016
Autor: Infinit

Hallo,
was Du hier im Zeitbereich beschreibst bzw. als Ergebnis bekommst, ist die klassische Rechteckfunktion der Dauer T mit der Höhe 1. Hierzu gehört als Fouriertransformierte die si-Funktion [mm] si(\pi f) [/mm], die allerdings über alle Grenzen oszilliert und keine Grenzen besitzt. Deren Maximum hat bei [mm] f = 0 [/mm] den Wert 1.
Viele Grüße,
Infinit

Bezug
                
Bezug
Rect()transformiert:Gewichtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Mo 04.04.2016
Autor: elektroalgebra93

Hm, hab eben auf google books gefunden:
[mm] rect(\bruch{t}{T}) [/mm] transformiert=> l T l * si(pi*f*T)
Also doch die Höhe T.

http://fs5.directupload.net/images/160404/8rrpcd64.png

lG

Bezug
                        
Bezug
Rect()transformiert:Gewichtung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Di 05.04.2016
Autor: Infinit

Hallo elektroalgebra,
jetzt habe ich das ganze mal per Hand ausgerechnet und ja, Du hast Recht, wenn die Grenzen Zeitgrenzen sind, also als Funktion von der Zeitdauer T ausgedrückt werden, so bekommt man
[mm] F(j \omega) =\int_{-\bruch{T}{2}}^{\bruch{T}{2}} e^{- j \omega t} \, dt [/mm]
und das ergibt
[mm] F(j \omega) = \bruch{-1}{j \omega} \cdot (e^{- j \omega \bruch{T}{2}} - e^{j \omega \bruch{T}{2}} )[/mm]
Erweitern der rechten Seite mit dem Bruch [mm] \bruch{2}{2} [/mm] erlaubt die Einführung der Sinusfunktion:
[mm] F(j \omega) = \bruch{2}{\omega} \cdot \sin(\bruch{\omega T}{2}) [/mm]
Wenn ich jetzt noch setze
[mm] \omega = 2 \pi f [/mm]
dann bleibt nach Kürzen übrig:
[mm] F(j \omega) = T \cdot si(\pi f T) [/mm]
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]