Rang einer Garbe < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:03 Do 18.07.2013 | Autor: | itzepo11 |
Sei [mm] $\mathcal{F}$ [/mm] ein lokal freier [mm] $\mathcal{O}_X$-Modul [/mm] von endlichem Rang auf einem hinreichend guten Schema $X$ ueber einem Koerper $k$ (also $X$ soll noethersch, reduziert, irreduzibel,...sein).
Sei jetzt [mm] $\xi$ [/mm] der generische Punkt von $X$. Dann ist [mm] $\mathcal{F}_{ \xi}$ [/mm] von endlicher Dimension als Vektorraum ueber [mm] $\mathcal{O}_{X, \xi}$. [/mm] Diese Dimension wird in der Regel auch der Rang genannt (z.B. in Liu oder Hartshorne). Gibt es einen Zusammenhang (Gleichheit) zwischen diesen Begriffen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:27 Do 18.07.2013 | Autor: | felixf |
Moin,
Defintion 1:
> Sei [mm]\mathcal{F}[/mm] ein lokal freier [mm]\mathcal{O}_X[/mm]-Modul von
> endlichem Rang auf einem hinreichend guten Schema [mm]X[/mm] ueber
> einem Koerper [mm]k[/mm] (also [mm]X[/mm] soll noethersch, reduziert,
> irreduzibel,...sein).
Definition 2:
> Sei jetzt [mm]\xi[/mm] der generische Punkt von [mm]X[/mm]. Dann ist
> [mm]\mathcal{F}_{ \xi}[/mm] von endlicher Dimension als Vektorraum
> ueber [mm]\mathcal{O}_{X, \xi}[/mm]. Diese Dimension wird in der
> Regel auch der Rang genannt (z.B. in Liu oder Hartshorne).
>
> Gibt es einen Zusammenhang (Gleichheit) zwischen diesen
> Begriffen?
Ich wuerde sagen ja: sei $U$ eine nicht-leere offene Teilmenge von $X$, so dass [mm] $\mathcal{F}|_U$ [/mm] frei ist. Dann gibt es einen Isomorphismus [mm] $(\mathcal{O}_X|_U)^r \cong \mathcal{F}|_U$ [/mm] fuer ein $r$ -- das ist der Rang von [mm] $\mathcal{F}$ [/mm] nach der ersten Definition.
Nun ist $X$ irreduzibel, womit der generische Punkt in $U$ liegt. Der Isomorphismus [mm] $(\mathcal{O}_X|_U)^r \cong \mathcal{F}|_U$ [/mm] schraenkt sich jetzt zu einem Isomorphismus auf den Halmen ein: damit bekommst du [mm] $(\mathcal{O}_{X,\xi})^r [/mm] = [mm] (\mathcal{O}_X|_U)^r_\xi \cong \mathcal{F}|_U_\xi [/mm] = [mm] \mathcal{F}_\xi$.
[/mm]
Und somit siehst du, dass der Rang nach Definition 2 der gleiche ist.
Oder hab ich was uebersehen? :) (Kann vorkommen, ist einige Jahre her das ich sowas mal angeschaut hab...)
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:47 Fr 19.07.2013 | Autor: | itzepo11 |
Nein, das sieht absolut vernuenftig aus.
An der einen Stelle meintest du natuerlich "Nun ist $X$ irreduzibel, womit der generische Punkt in $U$ liegt." Wobei die andere Aussage natuerlich auch richtig ist :)
Vielen Dank fuer die Antwort.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:21 Fr 19.07.2013 | Autor: | felixf |
Moin!
> An der einen Stelle meintest du natuerlich "Nun ist [mm]X[/mm]
> irreduzibel, womit der generische Punkt in [mm]U[/mm] liegt." Wobei
> die andere Aussage natuerlich auch richtig ist :)
Ja, definitiv! Danke fuer den Hinweis, ich werd das gleich mal korrigieren.
LG Felix
|
|
|
|