Radius von Ball unter Brett < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:06 Mo 11.06.2007 | Autor: | dexter |
Aufgabe | Ein 2,60m langes und 1,00m breites Brett liegt schräg an einer Wand. Die Befestigung ist 1,00m hoch. Wie viel cm darf der Durchmesser eines Balls höchstens betragen, damit der Ball noch unter das Brett passt? |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich brauche nur einen kleinen Denkansatz, so weit bin ich gekommen:
Ein Brett ist an einer Wand befestigt(in x3 Richtung 1m) und dem Boden ( in x2 Richtung 2,4m) auf.
Darunter liegt ein Ball. Wie groß kann der Durchmesser des Balles maximal sein?
Das alles in ein dreidimensionales Koordinatensystem übertragen würde ja bedeuten:
Die Wand = x1x3-Ebene
Der Boden = x1x2Ebene
Das Brett = [mm] [\vektor{x \\ y \\ z} [/mm] - [mm] \vektor{0 \\ 0 \\ 1}] \* \vektor{0 \\ 1 \\ 2,4} [/mm] = 0
Wenn ich zu jeder Ebene eine orthogonale Ebene nehme und diese drei dann zum Schnitt bringe, dann dürfte ich ja den Mittelpunkt des Balles bekommen. Ich weiß jetzt nur nicht, wo ich die jeweiligen Stützvektoren anzusiedeln habe, damit der Abstand zu diesem Mittelpunkt von jeder Ebene gleich groß ist.
mfg Dex
Wie komme ich jetzt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:25 Mo 11.06.2007 | Autor: | noerpel |
darf ich mal fragen, ob es denn so verlangt ist? oder anders:
spricht was dagegen, es ueber den inkreis zu machen? ich meine
du hast alle drei seitenlaengen gegeben, im prinzip mit dem
rechten winkel auch die beiden anderen, da sollte es doch nicht
sooooo der akt sein den radius des inkreises direkt auszurechnen?
von allen gedanken bzgl vektoren und ebenen befreien:)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:55 Di 12.06.2007 | Autor: | dexter |
Innenkreis ist gut :).
Hab mich voll auf die neuen Sachen in Vektorgeometrie fixiert...
Ich hab das jetzt mal auf diese Weise probiert:
Versucht die Winkelhalbierenden Geraden zu berechnen..
Erst alle Winkel des Dreiecks, in dem der Kreis drin ist berechnet (Problem auf das wesentliche dezimiert).
Und beim nächsten Schritt bin ich mir nicht so sicher, weil da nur Schunt rauskommt:
Das Skalarprodukt so aufgelöst, dass ich einen unbekannten Vektor ausrechne. Macht man das so? Oder gibt es noch eine andere Möglichkeit zu einem Vektor einen unbekannten Vektor durch gegebenen Winkel zu berechnen?
Lösung wäre ja dann:
Die drei entstehenden Vektoren sind Richtungsvektoren der winkelhalbierenden Geraden, die sich alle im Mittelpunkt des Innenkreises schneiden. Von diesem Punkt rechne ich dann den Abstand zur Ebene des Brettes und habe den Radius, dieser verdoppelt ist der Durchmesser.
|
|
|
|