www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - R^2<-> Analytizität
R^2<-> Analytizität < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R^2<-> Analytizität: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:13 So 08.11.2015
Autor: havoc1

Hallo,

ich habe eine Funktion f: [mm] \IR^{2} [/mm] -> [mm] \IR, [/mm] die überall lokal als Potenzreihe geschrieben werden kann. Nun kann ich eine solche Funktion stets mit einer Funktion g: [mm] \IC [/mm] -> [mm] \IR [/mm] identifizieren. Ich bin mir nun eigentlich sicher, dass ich diese Funktion g dann auch in einer (komplexen) Potenzreihe schreiben kann. (und umgekehrt= Weiß aber zugegebenermaßen nicht wie man das kurz und prägnant begründen kann. Geht es möglicherweiße gar nicht kurz, oder gibt es ein gutes Argument?

Man kann natürlich sagen, dass f  [mm] \circ [/mm] ( [mm] \Theta) [/mm] = g für einen Isomorphismus von   [mm] \IC [/mm] nach [mm] \IR^{2} [/mm]  und umgekehrt. Aber das ist mir nicht so wirklich ausreichend..

        
Bezug
R^2<-> Analytizität: Antwort
Status: (Antwort) fertig Status 
Datum: 09:08 Mo 09.11.2015
Autor: fred97


> Hallo,
>  
> ich habe eine Funktion f: [mm]\IR^{2}[/mm] -> [mm]\IR,[/mm] die überall
> lokal als Potenzreihe geschrieben werden kann. Nun kann ich
> eine solche Funktion stets mit einer Funktion g: [mm]\IC[/mm] -> [mm]\IR[/mm]
> identifizieren. Ich bin mir nun eigentlich sicher, dass ich
> diese Funktion g dann auch in einer (komplexen) Potenzreihe
> schreiben kann. (und umgekehrt= Weiß aber
> zugegebenermaßen nicht wie man das kurz und prägnant
> begründen kann. Geht es möglicherweiße gar nicht kurz,
> oder gibt es ein gutes Argument?
>  
> Man kann natürlich sagen, dass f  [mm]\circ[/mm] ( [mm]\Theta)[/mm] = g für
> einen Isomorphismus von   [mm]\IC[/mm] nach [mm]\IR^{2}[/mm]  und umgekehrt.
> Aber das ist mir nicht so wirklich ausreichend..


Ich gebe folgendes zu bedenken:

Ist $g: [mm] \IC \to \IR$ [/mm] eine Funktion, die sich in einer offenen Umgebung U von [mm] z_0 \in \IC [/mm] als Potenzreihe schreiben lässt, so ist g auf U holomorph.

Dann muss g aber auf U konstant sein. Denn wäre dies nicht der Fall, so wäre $g(U)$ eine offene Teilmenge von [mm] \IC, [/mm] was aber wegen

  $g(U) [mm] \subseteq g(\IC) \subseteq \IR$ [/mm]

nicht der Fall sein kann.

Fazit: g ist auf U konstant.

FRED

Bezug
                
Bezug
R^2<-> Analytizität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:03 Mo 09.11.2015
Autor: havoc1

Ich versteh was du meinst, meine Überlegung würde implizieren, dass analytische Funktionen von [mm] R^2 [/mm] nach R immer konstant wären. Wäre es nicht zumindest möglich zu sagen eine analytische Funktion (von R2 nach R) ist der Realteil einer holomorphen Funktion? (Und man schreibt die Funktion f dann als Realteil der Potenzreihe?

Bezug
                        
Bezug
R^2<-> Analytizität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 12.11.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]