www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - R-Moduln abelsche Gruppe
R-Moduln abelsche Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Moduln abelsche Gruppe: Ansatz
Status: (Frage) beantwortet Status 
Datum: 00:10 Di 04.11.2014
Autor: Lisa641

Aufgabe
Sei K ein Körper und [mm] R:=K[x]/. [/mm] Bestimme bis auf Isomorphie alle endlich erzeugten R-Moduln,die als K-Vektorräume die Dimension 5 haben.

Hallo zusammen,

ich sitze wieder einmal an den Hausaufgaben und komme bei dieser Aufgabe nicht weiter. Mir fehlt leider der Ansatz. Könnte mir jemand vllt behilflich sein?

        
Bezug
R-Moduln abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 06:26 Di 04.11.2014
Autor: felixf

Moin!

> Sei K ein Körper und [mm]R:=K[x]/.[/mm] Bestimme bis auf
> Isomorphie alle endlich erzeugten R-Moduln,die als
> K-Vektorräume die Dimension 5 haben.
>
>  Hallo zusammen,
>
> ich sitze wieder einmal an den Hausaufgaben und komme bei
> dieser Aufgabe nicht weiter. Mir fehlt leider der Ansatz.
> Könnte mir jemand vllt behilflich sein?  

Ihr hattet doch sicher den Hauptsatz über endlich erzeugte Moduln über Hauptidealbereichen, oder etwas vergleichbares. Den kannst du hier benutzen. Du musst dir überlegen, wie die $K$-Dimension von $R/I$ für Ideale $I$ von $R$ ist. Und was überhaupt Ideale $I$ von $R$ sind (davon gibt es nicht viele, man kann sie explizit hinschreiben und $R/I$ sehr schön beschreiben).

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]