www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Quotientenkriterium
Quotientenkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkriterium: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:35 Di 29.12.2009
Autor: capablanca

Aufgabe
  Untersuchen Sie auf Konvergenz/Divergenz (z. B. mittels Quotientenkriterium):

[mm] \summe_{k=1}^{\infty} k(\bruch{3}{4})^k [/mm]

Hallo, ich kann ein Rechenschritt nicht nachvolziehen, würde mich über einen Hinweis freuen.

und zwar wie kommt man von: [mm] \bruch{(k+1)(3/4)^{k+1}}{k*(3/4)^k} [/mm]
auf: [mm] \bruch{k+1}{k}*\bruch{3}{4} [/mm]

also hat man wohl [mm] (3/4)^k [/mm] im Zähler mit [mm] (3/4)^k [/mm] im Nenner gekürzt aber im Zähler bleibt ja noch die Potenz von (3/4) ohne k also +1 ?, und wie kommt man auf den zweiten Bruch in dem zweiten Rechenschritt [mm] *\bruch{3}{4} [/mm] ?


danke im vorraus

gruß Alex

        
Bezug
Quotientenkriterium: Umformung
Status: (Antwort) fertig Status 
Datum: 20:42 Di 29.12.2009
Autor: Loddar

Hallo Alex!


Es gilt:
[mm] $$\bruch{(k+1)*\left(\bruch{3}{4}\right)^{k+1}}{k*\left(\bruch{3}{4}\right)^k} [/mm] \ = \ [mm] \bruch{k+1}{k}*\bruch{\left(\bruch{3}{4}\right)^k*\left(\bruch{3}{4}\right)^1}{\left(\bruch{3}{4}\right)^k} [/mm] \ = \ [mm] \bruch{k+1}{k}*\bruch{1*\bruch{3}{4}}{1} [/mm] \ = \ [mm] \bruch{k+1}{k}*\bruch{3}{4}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Quotientenkriterium: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Di 29.12.2009
Autor: capablanca

Ich habe es verstanden, danke sehr!

gruß Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]