QR-Zerlegung < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:25 Fr 26.11.2004 | Autor: | Bastiane |
Hallo!
Diese Aufgabe hätten wir zwar schon abgeben sollen, aber da wir das nicht auf die Reihe bekommen haben und auf dem nächsten Blatt wieder ganz viel mit QR-Zerlegung vorkommt, will ich das jetzt doch mal wissen...
Wir sollten eine QR-Zerlegung mit Householder-Reflektionen von der Matrix A machen.
[mm] A=\pmat{ 0 & -2 & -1 \\ 0 & 0 & -1 \\ 4 & 5 & 2 }
[/mm]
Laut Skript muss ich da zuerst [mm] v^1 [/mm] := [mm] a^1 [/mm] + sign [mm] (a_{11})||a^1||_2 e^1 [/mm] berechnen, wobei [mm] a^1 [/mm] die erste Spalte von a, a_11 der "erste" Eintrag und [mm] e^1 [/mm] der Vektor [mm] \vektor{1 \\ 0 \\ 0}. [/mm] Das wäre doch dann:
[mm] v^1 [/mm] = [mm] \vektor{0 \\ 0 \\ 4}
[/mm]
Nun muss ich [mm] Q_1 [/mm] := [mm] Q_{v^1} [/mm] berechnen.
Also:
[mm] Q_1 [/mm] = I - [mm] \bruch{2vv^T}{v^T v}, [/mm] wobei [mm] v=v_1
[/mm]
Da erhalte ich [mm] Q_1 [/mm] = [mm] \pmat{\bruch{1}{16} & 0 & 0 \\ 0 & \bruch{1}{16} & 0 \\ 0 & 0 & 0}
[/mm]
und somit [mm] Q_1 [/mm] * A = [mm] \pmat{ 0 & -\bruch{2}{16} & -\bruch{1}{16} \\ 0 & 0 & -\bruch{1}{16} \\ 0 & 0 & 0}
[/mm]
Komisch, heute kommt es hin, gestern hatte ich längst nicht so viele Nullen da stehen. Trotzdem hätte ich gerne eine Bestätigung, dass dies richtig ist oder einen Hinweis auf einen Fehler.
Wenn ich jetzt weiter mache, muss ich doch für die Matrix [mm] \pmat{0 & -\bruch{1}{16} \\ 0 & 0} [/mm] dasselbe machen. Das kommt mir allerdings komisch vor, da hier der erste Vektor ja der Nullvektor ist - irgendwo ist da wohl ein Fehler.
Wer findet meinen Fehler?
Viele Grüße
Bastiane
|
|
|
|
Hallo Bastiane,
> Laut Skript muss ich da zuerst [mm]v^1[/mm] := [mm]a^1[/mm] + sign
> [mm](a_{11})||a^1||_2 e^1[/mm] berechnen, wobei [mm]a^1[/mm] die erste Spalte
> von a, a_11 der "erste" Eintrag und [mm]e^1[/mm] der Vektor
> [mm]\vektor{1 \\ 0 \\ 0}.[/mm] Das wäre doch dann:
> [mm]v^1[/mm] = [mm]\vektor{0 \\ 0 \\ 4}
[/mm]
Hier findest du eine Beschreibung der Householder QR Zerlegung die eine Sonderbehandlung der 0 enthält. Dies deckt sich mit meiner Erinnerung.
> Nun muss ich [mm]Q_1[/mm] := [mm]Q_{v^1}[/mm]
> berechnen.
> Also:
> [mm]Q_1[/mm] = I - [mm]\bruch{2vv^T}{v^T v},[/mm] wobei [mm]v=v_1
[/mm]
> Da erhalte ich [mm]Q_1[/mm] = [mm]\pmat{\bruch{1}{16} & 0 & 0 \\ 0 & \bruch{1}{16} & 0 \\ 0 & 0 & 0}
[/mm]
Ein nicht invertierbares Q ist auf jeden Fall verdächtig. Dies kann nicht stimmen.
> und somit [mm]Q_1[/mm] * A = [mm]\pmat{ 0 & -\bruch{2}{16} & -\bruch{1}{16} \\ 0 & 0 & -\bruch{1}{16} \\ 0 & 0 & 0}
[/mm]
>
> Komisch, heute kommt es hin, gestern hatte ich längst nicht
> so viele Nullen da stehen. Trotzdem hätte ich gerne eine
> Bestätigung, dass dies richtig ist oder einen Hinweis auf
> einen Fehler.
Nach Multiplikation mit Q sollte in der ersten Spalte das erste Element ungleich null sein und die anderen Gleich null.
gruß
mathemaduenn
|
|
|
|