www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Pseudoinverse Abbildung
Pseudoinverse Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pseudoinverse Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 02.12.2008
Autor: MartinW

Aufgabe
1. Gegeben sind die Vektorräume V, W und g [mm] \varepsilon [/mm] L(V,W). Wählen Sie eine beliebige Projetion p: W [mm] \to [/mm]
g(V) und in V ein beliebiges Komplement U von ker g. Zeigen Sie dass die Abbildung [mm] g_{1}: [/mm]
g(V) [mm] \to [/mm] V, die jedem Vektor sein einziges g-Urbild in U zuordnet wohldef. und linear ist.
Zeigen Sie zudem, dass dann g1 [mm] \circ [/mm] p eine zu g pseudoinvese Abb. ist. Skizzieren Sie die
Konstruktion für dim V = dim W = 3, rg g =2

2. Wie vereinfacht sich die Konstr. Wenn g injetiv, surjekt, bijekiv ist?

3. Beweisen Sie, dass jede zu g pseudoinv. Abb. h die zuvor beschriebene Darstellung für
U=h(W) und ker p = ker h gestattet.

Hallo. Vl. kann mir jemend bei dem Beispiel weiterhelfen. Wenn ich als p = (1 0 0 | 0 1 0 | 0 0 0) wähle und g = (1 0 0|2 0 0|0 1 0) nehme, wie komme ich dann zur Abbildung g1?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Pseudoinverse Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Mi 03.12.2008
Autor: angela.h.b.


> 1. Gegeben sind die Vektorräume V, W und g [mm]\varepsilon[/mm]
> L(V,W). Wählen Sie eine beliebige Projetion p: W [mm]\to[/mm]
>  g(V) und in V ein beliebiges Komplement U von ker g.
> Zeigen Sie dass die Abbildung [mm]g_{1}:[/mm]
> g(V) [mm]\to[/mm] V, die jedem Vektor sein einziges g-Urbild in U
> zuordnet wohldef. und linear ist.

> Wenn ich als p = (1 0 0 | 0 1 0 | 0 0 0) wähle und g = (1 0
> 0|2 0 0|0 1 0) nehme, wie komme ich dann zur Abbildung g1?

Hallo,

[willkommenmr].

Wenn ich das, was Du schreibst, richtig deute, möchtest Du [mm] V,W=\IR^3, [/mm]

[mm] p:=\pmat{1&0&0\\0&1&0\\0&0&1} [/mm] und

[mm] g:=\pmat{2&1&0\\0&0&1\\0&0&0} [/mm]

nehmen.

Es ist in der Tat  p eine Projektion vom  [mm] \IR^3 [/mm] auf [mm] g(\IR^3). [/mm]

Weiter benötigst Du ja vor dem Aufbau von [mm] g_1 [/mm] noch den Kern von g  und vor allem ein Komplement U von Kerng.

Die Abbildung [mm] g_1:g(V)[/mm]  [mm]\to[/mm] V soll dann folgendes tun:

[mm] g_1(v)= [/mm] u , wobei  g(u)=v mit [mm] u\in [/mm] U.

Diese Abbildung sollst Du in Teil 1 untersuchen.

Gruß v. Angela







> Zeigen Sie zudem, dass dann g1 [mm]\circ[/mm] p eine zu g
> pseudoinvese Abb. ist. Skizzieren Sie die
> Konstruktion für dim V = dim W = 3, rg g =2
>  
> 2. Wie vereinfacht sich die Konstr. Wenn g injetiv,
> surjekt, bijekiv ist?
>  
> 3. Beweisen Sie, dass jede zu g pseudoinv. Abb. h die zuvor
> beschriebene Darstellung für
>  U=h(W) und ker p = ker h gestattet.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]