Problem mit Graphenaufgabe < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 18:08 Do 27.01.2011 | Autor: | Tunnel |
Aufgabe 1 | Zeigen oder widerlegen Sie folgende Aussagen:
(deg() = der Grad von () )
Für jeden Graphen G=(E,V) mit [mm]| V | \geq 2[/mm] existieren zwei Knoten v,v' [mm]\in V[/mm] mit v [mm]\neq[/mm] v' und deg(v)[mm]\neq[/mm] deg(v'). |
Aufgabe 2 | Für jedes n[mm]\geq2[/mm] existiert ein Graph G=(E,V), der n-1 Knoten mit verschiedenen Graden hat. D.h. es existiert M=[mm]\{v_{1},...,v_{n}\}\subset V [/mm] mit deg([mm]v_{i}[/mm])[mm]\neq[/mm] deg([mm]v_{j}[/mm]) für alle [mm]1\leqi |
Hallo Leute,
ich habe diese Aufgabe im Rahmen einer Vorlesung gestellt bekommen. JEdoch habe ich nichts so wirklich verstanden :(
Deswegen hoffe ich das mir jemand von euch helfen kann und mir ein paar hinweise, tipps etc. geben kann.
ICh danke schonmal im Vorraus.
lg Ionel
(Edit by Mod. Marcel: Formeleingabe korrigiert!)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:13 So 30.01.2011 | Autor: | Sigma |
> Zeigen oder widerlegen Sie folgende Aussagen:
> (deg() = der Grad von () )
> Für jeden Graphen G=(E,V) mit [mm]| V | \geq 2[/mm] existieren
> zwei Knoten v,v' [mm]\in V[/mm] mit v [mm]\neq[/mm] v' und deg(v)[mm]\neq[/mm]
> deg(v').
Was ist dem mit den vollständigen Graphen [mm] $K_2$ [/mm] und [mm] $K_3$. [/mm] Gilt da die Behauptung?
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]
> Für jedes n[mm]\geq2[/mm] existiert ein Graph G=(E,V), der n-1
> Knoten mit verschiedenen Graden hat. D.h. es existiert
> M=[mm]\{v_{1},...,v_{n}\}\subset V[/mm] mit deg([mm]v_{i}[/mm])[mm]\neq[/mm]
> deg([mm]v_{j}[/mm]) für alle [mm]1\leqi
Gilt das für den [mm] $K_2$? [/mm] Kannst du einen Graphen mit 3 Knoten konstruieren für den die Behauptung gilt. usw.
> Hallo Leute,
> ich habe diese Aufgabe im Rahmen einer Vorlesung gestellt
> bekommen. JEdoch habe ich nichts so wirklich verstanden :(
> Deswegen hoffe ich das mir jemand von euch helfen kann und
> mir ein paar hinweise, tipps etc. geben kann.
> ICh danke schonmal im Vorraus.
> lg Ionel
Ein wenig Eigeninitiative wäre angebracht.
Dateianhänge: Anhang Nr. 1 (Typ: JPG) [nicht öffentlich] Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
|
|
|
|