www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Problem bei Beweis
Problem bei Beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem bei Beweis: Stimmt die Idee?
Status: (Frage) beantwortet Status 
Datum: 09:36 Sa 18.12.2010
Autor: SolRakt

Hallo, habe nochmal eine Frage.

zz. Jede konvergente Folge ist beschränkt.

Bew.

Sei [mm] a_{n} \to [/mm] a eine konvergente Folge.

Dann ist [mm] |a_{n}| [/mm] = [mm] |a_{n} [/mm] -a +a| [mm] \le |a_{n} [/mm] -a| + |a|

Der erste Summand ist beschränkt, da das eine Nullfolge ist und der zweite Summand ist sowieso beschränkt. Folglich ist jede konvergente Folge beschränkt.

Kann man den Beweis so machen? Oder ist das komplett daneben?

Wenn das jetzt gehen sollte, dann habe ich aber noch eine Frage dazu. Müsste man beweisen, dass jede Nullfolge beschränkt ist. Also nur, wenn man ganz genau sein möchte ;) Oder?



        
Bezug
Problem bei Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Sa 18.12.2010
Autor: fred97


> Hallo, habe nochmal eine Frage.
>  
> zz. Jede konvergente Folge ist beschränkt.
>  
> Bew.
>  
> Sei [mm]a_{n} \to[/mm] a eine konvergente Folge.
>  
> Dann ist [mm]|a_{n}|[/mm] = [mm]|a_{n}[/mm] -a +a| [mm]\le |a_{n}[/mm] -a| + |a|
>  
> Der erste Summand ist beschränkt, da das eine Nullfolge
> ist und der zweite Summand ist sowieso beschränkt.
> Folglich ist jede konvergente Folge beschränkt.
>  
> Kann man den Beweis so machen?

Ja, wenn gezeigt ist, dass eine Nullfolge beschränkt ist.


> Oder ist das komplett
> daneben?
>
> Wenn das jetzt gehen sollte, dann habe ich aber noch eine
> Frage dazu. Müsste man beweisen, dass jede Nullfolge
> beschränkt ist. Also nur, wenn man ganz genau sein möchte
> ;) Oder?

Ja, das solltest Du tun.

FRED

>  
>  


Bezug
                
Bezug
Problem bei Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Sa 18.12.2010
Autor: SolRakt

Danke ;)

Ich muss zugegeben, dass ich den Beweis für "Jede Nullfolge ist beschränkt" nicht mehr kenne. Hab jetzt mal nachgelesen, aber so ganz verstehe ich das leider nicht.

zu [mm] \varepsilon [/mm] = 1 ex. ein [mm] n_{0} [/mm] mit [mm] |x_{n}| [/mm] < 1 für alle n [mm] \ge n_{0} [/mm] Also gilt für alle n [mm] \in \IN, [/mm] dass
[mm] |x_{n}| \le [/mm] max{1, [mm] |x_{1}|, |x_{2}|, [/mm] ... , [mm] |x_{n_{0}-1}| [/mm] }

Hmm..verstehe diesen beweis irgendwie nicht. Also, dass mit dem Maximum verwirrt mich. Der erste Teil ist ja nur Definition von Konvergenz. Darf ich denn [mm] \varepsilon [/mm] einfach = 1 setzen? Und wenn ja, warum? Danke vielmals.

Bezug
                        
Bezug
Problem bei Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Sa 18.12.2010
Autor: Gonozal_IX

Hallo,

das ist doch genau das, was abakus bereits geschrieben hatte.

Du weißt für jedes [mm] \varepsilon [/mm] gibt es ein [mm] $n_0$, [/mm] so dass alle kommenden Folgenglieder in der [mm] $\varepsilon$-Umgebung [/mm]  um Null liegen, insbesondere zu [mm] $\varepsilon [/mm] = 1$.

D.h. ab [mm] n_0 [/mm] sind alle kommenden Folgenglieder durch 1 beschränkt (weil sie in der 1-Umgebung um 0 liegen!).

Nun musst du nur noch gucken, welches von den vorherigen (endlichen!) Folgengliedern vor [mm] n_0 [/mm] das grösste war.

MFG,
Gono.

Bezug
                                
Bezug
Problem bei Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Sa 18.12.2010
Autor: SolRakt

Sry, aber das mit dem Maximum verstehe ich irgendwie immer noch nicht :( Aber das ich [mm] \varepsilon [/mm] mit 1 wählen kann, versteh ich wiederum. Danke schonmal dafür.

Bezug
                                        
Bezug
Problem bei Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 18.12.2010
Autor: Gonozal_IX

Huhu

ok, wir setzen [mm] $\varepsilon [/mm] = 1$, dann weisst du, es gibt dieses [mm] n_0 [/mm] so dass für alle folgenden Folgenglieder gilt [mm] $|x_n| [/mm] < 1$

D.h. es gilt [mm] $x_{n_0} [/mm] < [mm] 1,\;x_{n_0+1} [/mm] < [mm] 1,\; x_{n_0+2} [/mm] < [mm] 1,\ldots$ [/mm]

Du willst nun aber zeigen, dass die gesamte Folge beschränkt ist.
Dafür  musst du noch zeigen, dass auch die erste [mm] n_0 [/mm] Glieder beschränkt sind.
Offensichtlich sind sie beschränkt durch:

[mm] \max\{|x_0|,|x_1|,\ldots,|x_{n_0 -1}|\} [/mm]

D.h. die GESAMTE Folge (weil die anderen ja durch 1 beschränkt sind) ist beschränkt durch

[mm] \max\{|x_0|,|x_1|,\ldots,|x_{n_0 -1}|,1\} [/mm]

MFG,
Gono

Bezug
                                        
Bezug
Problem bei Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Sa 18.12.2010
Autor: abakus


> Sry, aber das mit dem Maximum verstehe ich irgendwie immer

Nimm mal an, eine Folge konvergiert gegen 1000 und fast alle Glieder liegen zwischen 999 und 1001. Außerhalb dieser Umgebung liegen endlich viele Glieder, z.B. zwischen 100 und 875.
Die Schranke für die Glieder in der [mm] \epsilon-Umgebung [/mm] ist 1001, eine Schranke für die anderen ist 875.
Schranke für beide Teilmengen ist die größere von beiden, also 1001.
Wenn hingegen die Glieder außerhalb der [mm] \epsilon-Umgebung [/mm] nicht zwischen 100 und 875, sondern zwischen 1022 und 1500 gelegen hätten, dann wäre nicht 1001, sondern die größere Zahl 1500 die gemeinsame Schranke gewesen.
Gruß Abakus


> noch nicht :( Aber das ich [mm]\varepsilon[/mm] mit 1 wählen kann,
> versteh ich wiederum. Danke schonmal dafür.


Bezug
        
Bezug
Problem bei Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Sa 18.12.2010
Autor: abakus


> Hallo, habe nochmal eine Frage.
>  
> zz. Jede konvergente Folge ist beschränkt.
>  
> Bew.
>  
> Sei [mm]a_{n} \to[/mm] a eine konvergente Folge.
>  
> Dann ist [mm]|a_{n}|[/mm] = [mm]|a_{n}[/mm] -a +a| [mm]\le |a_{n}[/mm] -a| + |a|
>  
> Der erste Summand ist beschränkt, da das eine Nullfolge
> ist und der zweite Summand ist sowieso beschränkt.
> Folglich ist jede konvergente Folge beschränkt.
>  
> Kann man den Beweis so machen? Oder ist das komplett
> daneben?
>
> Wenn das jetzt gehen sollte, dann habe ich aber noch eine
> Frage dazu. Müsste man beweisen, dass jede Nullfolge
> beschränkt ist. Also nur, wenn man ganz genau sein möchte
> ;) Oder?
>  
>  

Hallo,
was auch noch geht:
Konvergente Folge --> fast alle Glieder in einer [mm] \epsilon-Umgebung [/mm] von g
--> diese Teilfolge ist beschränkt.
Die Menge der endlich vielen Glieder, die nicht in der [mm] \epsilon-Umgebung [/mm] sind, besitzt ein betragsmäßiges Maximum --> sie ist auch beschränkt.
Die größere der beiden Schranken der beiden Teilmengen ist dann Schranke für die Gesamtmenge.
Gruß Abakus




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]