Primzahl^2 Ordnung einer Gr. < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 21:16 Sa 10.06.2017 | Autor: | mbra771 |
Aufgabe | Wenn $p$ eine Primzahl ist und die Ordnung der Gruppe G ist [mm] $p^2$, [/mm] dann ist $G$ entweder zyklisch oder isomorph zu [mm] $\mathbb{Z}_p \times \mathbb{Z}_p$. [/mm] |
Ich habe eine Frage zum Beweis des oben aufgeführten Satz. Der Beweis lautet:
Sei die Ordnung von $G$ gleich [mm] $p^2$. [/mm] Wenn $G$ ein Element mit der Ordnung [mm] $p^2$ [/mm] enthält, dann ist $G$ zyklisch. Andernfalls haben alle Elemente (ausgenommen $e$) die Ordnung $p$. Das Zentrum von $G$ ist nach Satz 17.4 nicht [mm] trivial.\\
[/mm]
[mm] \\
[/mm]
Wir wählen ein $x [mm] \in [/mm] Z(G)$ mit [mm] $x\neq [/mm] e$ und ein $y$, welches nicht in [mm] $\langle [/mm] x [mm] \rangle$ [/mm] liegt. [mm] \\
[/mm]
Die [mm] $p^2$ [/mm] Elemente [mm] $x^{i} y^{j} [/mm] $, mit $1 [mm] \leq [/mm] i$, [mm] $j\leq [/mm] p$ sind disjunkt, weil [mm] $\langle [/mm] x [mm] \rangle$ [/mm] und [mm] $\langle [/mm] y [mm] \rangle$ [/mm] nur die Identität als gemeinsames Element [mm] besitzen.\\
[/mm]
Deswegen gilt [mm] $\langle [/mm] x [mm] \rangle \langle [/mm] y [mm] \rangle=G$. [/mm] Jedes Element von [mm] $\langle [/mm] x [mm] \rangle$ [/mm] kommutiert mit jedem Element von [mm] $\langle [/mm] y [mm] \rangle$, [/mm] weil $x [mm] \in [/mm] Z(G)$. [mm] \\
[/mm]
Mit dem Satz 10.2 ist $G$ isomorph zu [mm] $\langle [/mm] x [mm] \rangle \times \langle [/mm] y [mm] \rangle$ [/mm] und daher zu [mm] $\mathbb{Z}_p \times \mathbb{Z}_p$.
[/mm]
Bis auf eine Frage verstehe ich den Beweis, aber warum
haben [mm] $\langle [/mm] x [mm] \rangle$ [/mm] und [mm] $\langle [/mm] y [mm] \rangle$ [/mm] nur die Identität als gemeinsames Element ?
Mit $Z(G)$ ist das Zentrum von $G$ gemeint.
Ich hab jetzt schon den ganzen Tag darüber nachgedacht, komme aber nicht auf die Lösung.
Würde mich sehr über Hilfe freuen.
Micha
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:21 Mo 12.06.2017 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:03 Di 13.06.2017 | Autor: | hippias |
Nimm mal an, dass es ein [mm] $1\neq a\in \cap [/mm] <y>$ gäbe. Welche Ordnung hat $a$? Schlussfolgere daraus, dass $<x>=<a>= <y>$ gelten müsste. Leite daraus einen Widerspruch zur speziellen Wahl von $y$ her.
|
|
|
|