www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Primidealzerlegung
Primidealzerlegung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primidealzerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:38 Di 26.07.2016
Autor: Fry

Hallo zusammen,

sei [mm]K:=\mathbb Q(\sqrt{-39})=\{a+b\sqrt{-39},a,b\in\mathbb Q\}[/mm]
und [mm]O_K=\{\frac{a+b\sqrt{-39}}{2},a,b\in\mathbb Z,a\equiv b mod 2\}[/mm] der zugehörige Ganzheitsring.

Ich möchte
1) die Primidealzerlegung [mm]p_1\cdot p_2\cdot p_3\cdot p_4[/mm] des Ideals [mm](10)[/mm] in [mm]O_K[/mm] bestimmen bzw. nachweisen, dass die Ideale Primideale sind.
2)Die Produkte der 4 Primideale bestimmen.




Meine Überlegungen zu 1):

Da [mm]-39\equiv 1 mod 4[/mm] müsste nach dem Zerlegungsgesetz (siehe http://www.rzuser.uni-heidelberg.de/~hb3/publ/qzk.pdf, S.61, Satz 4.8, bzw. Beweis)

[mm](10)=(2)\cdot (5)=(2,\frac{1+\sqrt{-39}}{2})(2,\frac{1-\sqrt{-39}}{2})(5,\frac{1+\sqrt{-39}}{2})(5,\frac{1-\sqrt{-39}}{2})[/mm] [mm]=:p_1\cdot p_2\cdot p_3\cdot p_4[/mm] sein.

Könnte mir jemand einen Tipp geben, wie ich beweisen kann, dass die Ideale prim sind?



2) Ich habe bereits bewiesen, dass [mm]p_1*p_2=(2)[/mm] und [mm]p_3*p_4=(5)[/mm] und ferner, dass
[mm]p_2*p_4=(\frac{1}{2}(1-\sqrt{-39}))[/mm].
Allerdings habe ich keine Idee, was das Ergebnis von [mm]p_2*p_3[/mm] oder [mm]p_1*p_4[/mm] seien könnte.
Hätte jemand einen Vorschlag?


Viele Grüße
Fry

        
Bezug
Primidealzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 27.07.2016
Autor: hippias

Zur 1. Frage: Ich setze [mm] $\delta= \frac{1+\sqrt{-39}}{2}$. [/mm]

Zeige, dass

1. [mm] $O_{K}= \IZ[\delta]$ [/mm]

2. [mm] $O_{k}= \IZ+p_{i}$ [/mm]

3. [mm] $\IZ\cap p_{i}$ [/mm] ein Primideal von [mm] $\IZ$ [/mm]

gilt.

Wende einen Isomorphiesatz auf [mm] $O_{k}/p_{i}$ [/mm] an.



Bezug
                
Bezug
Primidealzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 So 07.08.2016
Autor: Fry

Hey Hippas,

nochmal vielen Dank für deine Antwort! :)

VG
Fry

Bezug
        
Bezug
Primidealzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 01.08.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]