Primelement 2 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Für welcher dieser Ringe [mm] \IZ,\IZ[i], \IR[x], \IZ[\wurzel{-11}] [/mm] ist 2 ein Primelement? |
Hallo zusammen,
die Fragestellung ist klar und trotzdem habe ich kleine Schwierigkeiten. Aber gehen wir Schritt für Schritt:
in [mm] \IZ [/mm] ist 2 natürlich eine Primzahl.
in [mm] \IZ[i] [/mm] ist 2 kein Primelement, denn 2=(1+i)(1-i) und 2 teilt keine dieser beiden Faktoren.
jetzt aber kommen die Schwierigkeiten.
Wie ist eigentlich die Teilbarkeit in [mm] \IR[x] [/mm] definiert? Sei p ein Polynom, welches durch 2 teilbar ist. Findet man dann eine Zerlegung von p mit Faktoren, welche nicht durch 2 teilbar sind?
Oder andere Idee: Primelemente sind ja nur für Nichteinheiten und verschieden von 0 definiert. 2 ist in [mm] \IR[x] [/mm] aber eine Einheit!
Kann mir jemand den richtigen Weg zeigen?
Nun in: [mm] \IZ[\wurzel{-11}]. [/mm] Hmmmm... Ich habe mir, das so überlegt:
[mm] (1-\wurzel{-11})(1+\wurzel{-11})=12
[/mm]
2 teilt 12, aber keinen der beiden Faktoren, also kein Primelement. Dafür ist 2 aber irreduzibel.
Hätte jemand Zeit mir rasch zu helfen? Vielen Dank!!
Euer,
GorkyPark
Ich habe diese Frage in keinem anderen Forum gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:06 Mi 21.11.2007 | Autor: | felixf |
Hallo
> Für welcher dieser Ringe [mm]\IZ,\IZ[i], \IR[x], \IZ[\wurzel{-11}][/mm] [/i][/mm]
> [mm][i]ist 2 ein Primelement?[/i][/mm]
> [mm][i] Hallo zusammen,[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]die Fragestellung ist klar und trotzdem habe ich kleine [/i][/mm]
> [mm][i]Schwierigkeiten. Aber gehen wir Schritt für Schritt:[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]in [mm]\IZ[/mm] ist 2 natürlich eine Primzahl.[/i][/mm]
> [mm][i] in [mm]\IZ[i][/mm] ist 2 kein Primelement, denn 2=(1+i)(1-i) und 2 [/i][/mm][/i][/mm]
> [mm][i][mm][i]teilt keine dieser beiden Faktoren.[/i][/mm][/i][/mm]
Ja.
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]jetzt aber kommen die Schwierigkeiten.[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]Wie ist eigentlich die Teilbarkeit in [mm]\IR[x][/mm] definiert? Sei [/i][/mm][/i][/mm]
> [mm][i][mm][i]p ein Polynom, welches durch 2 teilbar ist. Findet man dann [/i][/mm][/i][/mm]
> [mm][i][mm][i]eine Zerlegung von p mit Faktoren, welche nicht durch 2 [/i][/mm][/i][/mm]
> [mm][i][mm][i]teilbar sind?[/i][/mm][/i][/mm]
2 ist in [mm] $\IR[x]$ [/mm] eine Einheit, da es bereits in [mm] $\IR$ [/mm] eine Einheit ist. Und Primelemente sind insb. keine Einheiten.
> [mm][i][mm][i]Oder andere Idee: Primelemente sind ja nur für [/i][/mm][/i][/mm]
> [mm][i][mm][i]Nichteinheiten und verschieden von 0 definiert. 2 ist in [/i][/mm][/i][/mm]
> [mm][i][mm][i][mm]\IR[x][/mm] aber eine Einheit![/i][/mm][/i][/mm]
Exakt.
> [mm][i][mm][i]Nun in: [mm]\IZ[\wurzel{-11}].[/mm] Hmmmm... Ich habe mir, das so [/i][/mm][/i][/mm]
> [mm][i][mm][i]überlegt:[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i][mm](1-\wurzel{-11})(1+\wurzel{-11})=12[/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]2 teilt 12, aber keinen der beiden Faktoren, also kein [/i][/mm][/i][/mm]
> [mm][i][mm][i]Primelement. Dafür ist 2 aber irreduzibel. [/i][/mm][/i][/mm]
Kannst du das auch begruenden? Wenn ja, bist du fertig.
LG Felix
|
|
|
|