Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:16 Mo 28.04.2008 | Autor: | xMariex |
Aufgabe | Geben Sie die Konvergenzradien und für [mm]x\in \IR[/mm] die Grenzwerte folgender Potenzreihen an:
a)
[mm]\summe_{n=0}^{\infty}(2n+1)(2x)^{2n}[/mm]
b)
[mm]\summe_{n=0}^{\infty}(4n-1)x^n[/mm]
c)
[mm]\summe_{n=1}^{\infty}n^2x^n[/mm]
d)
[mm]\summe_{n=0}^{\infty}\frac{x^n}{2n+2}[/mm] |
Ich habe diese Frage auf keiner anderen Internetseite gestellt.
N'Abend,
wäre sehr freundlich wenn sich jemand das durch lesen würde und Fehler aufdecken würde und Unsicherheiten beseiten könnte.
a)
[mm]\summe_{n=0}^{\infty}(2n+1)(2x)^{2n}[/mm]
[mm]a_n=2n+1[/mm]
mit Cauchy-Hadamard folgt:
[mm]\bruch{1}{limsup \wurzel[n]{|a_n|}}[/mm]
Der limes superior von meinem [mm]a_n[/mm] liegt irgendwo zwischen 1 und 3, aber ist drei nicht nur der Grenzwert? Weil eine Häufung gibt es da ja nicht, die wäre eher bei eins.
Grenzwert:
Konvergiert eine Reihe [mm]\summe_{}^{}a_n[/mm] gegen [mm]S=\lim_{m\rightarrow\infty}S_m= \lim_{n\rightarrow\infty} \summe_{}^{}a_n[/mm]
so bezeichnet [mm]\summe_{}^{}a_n[/mm] auch den Grenzwert.
Das [mm]2x^{2x}[/mm] hat ähnlichkeiten mit der geometrischen Reihe konvergiert für [mm]|x|<2[/mm] der erste Teil geht gegen unendlich, somit geht die gesamte Reihe gegen unendlich.
b)
[mm]\summe_{n=0}^{\infty}(4n-1)x^n[/mm]
[mm]a_n=4-1[/mm]
auch wieder mit Cauchy-Hadamard:
[mm]\bruch{1}{limsup \wurzel[n]{5}}= \bruch{1}{5}[/mm]
Grenzwert:
[mm]x^n[/mm] ist genau die geometrische Reihe konvergiert also für x<1, der forderer Teil ist eine konstante 5, somit konvergiert die gesamte Reihe gegen 5.
c)
[mm]\summe_{n=1}^{\infty}n^2x^n[/mm]
[mm]a_n=n^2[/mm]
auch mit Cauchy-Hadamard:
[mm]\bruch{1}{limsup \wurzel[n]{n^2}}[/mm]
Häufungswerte sind bei 2 und 1, man nimmt den größeren und erhält als Konvergenzradius [mm]\bruch{1}{2}[/mm]
Beim Grenzwert ist der zweite Teil wieder die geometrische Reihe und die [mm]n^2[/mm] gehen gegen unendlich. Also geht die gesamte Folge wieder gegen unendlich.
d)
[mm]\summe_{n=0}^{\infty}\frac{x^n}{2n+2}[/mm]
[mm]a_n=\bruch{1}{2n+2}[/mm]
[mm]lim |\bruch{a_n}{a_{n+1}}|[/mm]
ergibt eingesetzt, ist umgedreht wegen der eins im Zähler:
[mm]=lim|\bruch{2n+2+2}{2n+2}|= lim|\bruch{n+2}{n+1}|=2[/mm]
Beim Grenzwert hab ich keine Ahnung der letzte Teil ist wieder die geometrische Reihe, aber was mach ich mit dem ersten?
Grüße,
Marie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:55 Di 29.04.2008 | Autor: | Loddar |
Hallo Marie!
Mich wundert schon, wie Du jeweils auf die einzelnen Grenzwerte kommst.
Bei Aufgabe (a.) musst Du zunächst umformen:
[mm] $$\summe_{n=0}^{\infty}(2n+1)*(2x)^{2n} [/mm] \ = \ [mm] \summe_{n=0}^{\infty}(2n+1)*2^{2n}*x^{2n} [/mm] \ = \ [mm] \summe_{n=0}^{\infty}(2n+1)*4^{n}*x^{2n}$$
[/mm]
Damit gilt hier: [mm] $a_n [/mm] \ := \ [mm] (2n+1)*4^{n}$ [/mm] .
Gruß
Loddar
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:48 Di 29.04.2008 | Autor: | pelzig |
Aufgabe | Geben Sie die Konvergenzradien und für [mm]x\in \IR[/mm] die Grenzwerte folgender Potenzreihen an:
a) [mm]\summe_{n=0}^{\infty}(2n+1)(2x)^{2n}[/mm] b) [mm]\summe_{n=0}^{\infty}(4n-1)x^n[/mm] c) [mm]\summe_{n=1}^{\infty}n^2x^n[/mm] d) [mm]\summe_{n=0}^{\infty}\frac{x^n}{2n+2}[/mm] |
Also eh ich jetzt jede deiner Lösungen kommentiere, empfehle ich dir mal nochmal genau zu überlegen, was Potenzreihen sind, was im einzelnen die Koeffizientenfolgen sind und vor was [mm] $\lim_{n\to\infty}\sqrt[n]{\text{???}}$ [/mm] ist (das is leider kompletter Murcks was du dazu geschrieben hast).
Ich mach mal als Beispiel die a):
Wie Loddar schon angedeutet hat, lautet die Koeffizientenfolge hier genaugenommen [mm] $$a_n:=\begin{cases}(2n+1)\cdot4^n&\text{für gerades }n\ne0\\0&\text{sonst}\end{cases}$$Also [/mm] Insbesondere ist auch [mm] $a_0=0$.
[/mm]
Jetzt zu [mm] $\limsup_{n\to\infty}\sqrt[n]{|a_n|}$. [/mm] Da [mm] $a_n\ge0$, [/mm] können wir Den Betrag weglassen. Für gerades [mm]n[/mm] ist [mm] $\lim_{n\to\infty}\sqrt[n]{(2n+1)\cdot 4^n}=4$, [/mm] für ungerade ist [mm] $\lim_{n\to\infty}\sqrt[n]{0}=0. [/mm] Insgesamt also [mm] $\limsup_{n\to\infty}\sqrt[n]{|a_n|}=4$ [/mm] und somit der Konvergenzradius [mm] $R=\frac{1}{4}$
[/mm]
D.h. die Potenzreihe [mm] $\sum_{k=0}^\infty a_kx^k$ [/mm] konvergiert für alle [mm] $x\in\IC$ [/mm] mit [mm] $|x|<\frac{1}{4}$. [/mm] Was bei [mm] $|x|=\frac{1}{4}$ [/mm] passiert, wissen wir nicht.
Nun zum Grenzwert. Was ist der Grenzwert hier qualitativ überhaupt? Der Grenzwert hängt ja von dem $x$ ab, das ich betrachte, z.B. für $x=0$ steht da [mm] $\sum_{k=0}^\infty a_k\cdot0^k=0$ [/mm] (aber nur, weil hier [mm] a_0=0 [/mm] war!). Für $x=1$ divergiert die Reihe offensichtlich. Der Grenzwert ist nicht einfach nur ne Zahl, sondern eine Funktion [mm] $f:\IR\supseteq A\to\IR$ [/mm] - eine Zahl in Abhängigkeit von $x$.
z.B. ist für [mm] $\sum_{k=1}^\infty x^k=\frac{1}{1-x}$ [/mm] die Grenzwertfunktion [mm] $f:(-1,1)\ni x\mapsto\frac{1}{1-x}\in\IR$.
[/mm]
In unserem Beipspiel kann ich dir leider nicht sagen was die Grenzfunktion ist. Aber wir kennen $f(0)$ und wir wissen dass $f$ gerade ist (da die Potenzreihenentwicklung nur gerade Potenzen hat).
Ich habs mal durch Mathematica gejagt (hat ne ganze Weile gedauert, scheint also numerisch sehr aufwändig zu sein):
[Dateianhang nicht öffentlich]
(Frag mich nicht, wie Mathematica die Werte jenseits von [mm] $|x|<\frac{1}{4}$ [/mm] berechnet hat...)
Edit: Mathematica sagt übrigens dass die Grenzfunktion hier [mm] $\frac{4(x^2+4x^4)}{(-1+4x^2)^2}$ [/mm] ist... keine Ahnung wie man das "sieht".
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Korrektur) kleiner Fehler | Datum: | 19:36 Di 29.04.2008 | Autor: | rainerS |
Hallo Pelzig!
Ich muss dir und Loddar bei der Teilaufgabe a widersprechen.
> Wie Loddar schon angedeutet hat, lautet die
> Koeffizientenfolge hier genaugenommen
> [mm]a_n:=\begin{cases}(2n+1)\cdot4^n&\text{für gerades }n\ne0\\0&\text{sonst}\end{cases}[/mm]Also
> Insbesondere ist auch [mm]$a_0=0$.[/mm]
[mm] $a_0=1$, [/mm] und der Koeffizient von [mm] $x^{2n}$ [/mm] ist [mm] $a_{2n} [/mm] = [mm] (2n+1)\cdot4^n$, [/mm] nicht [mm] $a_n$.
[/mm]
Also ist:
[mm]a_n:=\begin{cases}(n+1)\cdot2^n&\text{für gerades }n\ge0\\0&\text{sonst}\end{cases}[/mm],
und der Konvergenzradius ist [mm]\bruch{1}{2}[/mm].
> Jetzt zu [mm]\limsup_{n\to\infty}\sqrt[n]{|a_n|}[/mm]. Da [mm]a_n\ge0[/mm],
> können wir Den Betrag weglassen. Für gerades [mm]n[/mm] ist
> [mm]$\lim_{n\to\infty}\sqrt[n]{(2n+1)\cdot 4^n}=4$,[/mm] für
> ungerade ist [mm]$\lim_{n\to\infty}\sqrt[n]{0}=0.[/mm] Insgesamt
> also [mm]$\limsup_{n\to\infty}\sqrt[n]{|a_n|}=4$[/mm] und somit der
> Konvergenzradius [mm]$R=\frac{1}{4}$[/mm]
> D.h. die Potenzreihe [mm]\sum_{k=0}^\infty a_kx^k[/mm] konvergiert
> für alle [mm]x\in\IC[/mm] mit [mm]|x|<\frac{1}{4}[/mm]. Was bei
> [mm]|x|=\frac{1}{4}[/mm] passiert, wissen wir nicht.
Das ist natürlich richtig, wenn du [mm]\bruch{1}{4}[/mm] durch [mm]\bruch{1}{2}[/mm] ersetzt.
Das erklärt auch, wie Mathematica die Werte zwischen [mm]\bruch{1}{4][/mm] und [mm]\bruch{1}{2}[/mm] berechnet
> Edit: Mathematica sagt übrigens dass die Grenzfunktion hier
> [mm]\frac{4(x^2+4x^4)}{(-1+4x^2)^2}[/mm] ist... keine Ahnung wie man
> das "sieht".
Durch gliedweise Integration sieht man, dass die Summe die Ableitung von
[mm] \bruch{1}{2} \summe_{n=0}^\infty (2x)^{2n+1} = x \summe_{n=0}^\infty (2x)^{2n} [/mm]
ist. Das ist eine geometrische Reihe, die gegen
[mm] \bruch{x}{1-4x^2} [/mm]
konvergiert. Einmal abgeleitet bekommst du den Grenzwert der Summe
[mm] \bruch{1+4x^2}{(1-4x^2)^2} [/mm]
(der übrigens nicht mit dem übereinstimmt, den du angegeben hast)
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Korrektur) oberflächlich richtig | Datum: | 19:54 Di 29.04.2008 | Autor: | pelzig |
wunderbar!
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:08 Di 29.04.2008 | Autor: | xMariex |
Hi,
erstmal danke für eure ausführliche Hilfe, leider sind mir beim nachrechnen noch ein paar Fragen untergekommen.
die erste Frage hab ich schon zur Entwicklung von [mm] a_n:
[/mm]
Wenn ich mir die Reihe anschaue und 0 einsetze erhalte ich eins, also ist [mm]a_0=1[/mm], dann schaue ich mir dir Reihe wieder ein und sehe auch noch das [mm]x^{2n}=a_{2n}[/mm] gehört, soweit auch alles klar aber jetzt geht es los, ich müsste doch nun eigentlich 2n rausziehen oder?
[mm](2n+1)(4^n)=8n^n+2^n=2n(4^n+2^n)=(2^n+1)2^n[/mm]
aber das kommt ja nicht so ganz hin.
Mal angenommen [mm](n+1)2^n[/mm] ist die Folge für gerades n, dann wende ich darauf Cauchy-Hadamard an:
[mm]\bruch{1}{limsup\sqrt{(n+1)2^n}}[/mm]
[mm]=\bruch{1}{limsup 2n+2}[/mm]
Mein Problem jetzt ist 2n+2 geht ja alleine erstmal gegen unendlich, nun steht das ja aber nun unter dem Bruchstrich, und [mm]\bruch{1}{2n}[/mm] alleine geht gegen null, und dann würde ja [mm]\bruch{1}{2}[/mm] übrig bleiben, aber ich darf das so ja nicht begründen, außerdem hab ich jetzt dem limsup ja nicht wirklich mir reingenommen sondern nur dem Limes.
Grüße,
Marie
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:41 Di 29.04.2008 | Autor: | leduart |
Hallo
setze [mm] x^2=y [/mm] dann hast du die Reihe:
[mm] \summe_{n=0}^{\infty}(2n+1)*4^n*y^n [/mm] bestimme davon den Konvergenzradius. Er ist 1/4, für x also 1/2
Deine Rechnung :$ [mm] (2n+1)(4^n)=8n^n+2^n=2n(4^n+2^n)=(2^n+1)2^n [/mm] $ ist wirklich sehr falsch! [mm] 2n*4^n [/mm] hat nichts mit [mm] n^n [/mm] zu tun. auch der nächst Umformungsschritt ist wieder falsch, also vergiss diese komisch völlig falsche Rechnung schnell!
[mm] lim\wurzel[n]{4^n*(2n+1)}=lim 4*\wurzel[n]{n}*\wurzel[n]{2+1/n}=4
[/mm]
wie du von [mm] \wurzel[n]{4^n*(2n+1)} [/mm] auf 2n+2 kommst ist mir nicht klar.
Versuch doch deine Rechenschritte zu überlegen, auch ob du sie rückgängig machen kannst.
Gruss leduart
|
|
|
|