Potenzreihe und Fakultät < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:55 Sa 03.02.2007 | Autor: | Zamenhof |
Aufgabe | Bestimmen Sie den Konvergenzradius der folgenden Potenzreihe:
[mm] \summe_{n=0}^{\infty} \bruch{(n!)^2(1+\bruch{1}{n})^{n^2}}{(2n)!}z^3^n [/mm] |
Hallo.
Hänge wieder mal verzweifelt an einer Aufgabe fest. Habe jetzt schon versucht die Aufgabe mit dem Cauchy-Hadamard Verfahren zu lösen, nur leider bleib ich dann an den Fakultäten hängen. Kann ich den Konvergenzradius evtl auch mit dem Euler-Verfahren berechen? Mein Problem ist dabei [mm] z^{3n}. [/mm] Kann mir evlt. jemand einen Tipp geben, wie ich die Aufgabe lösen kann?
Vielen Dank!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:06 Sa 03.02.2007 | Autor: | Loddar |
Hallo Zamenhof!
Um Dir hier vernünftig helfen zu können, solltest Du uns schon Deine Zwischenschritte / erst Lösungen verraten. Oder Du sagst uns, wo genau Du hängst.
Den Term mit [mm] $z^{\red{3}*n}$ [/mm] berücksichtigst Du, indem Du am Ende den ermittelten Konvergenzradius $R_$ umrechnest zu $R' \ = \ [mm] \wurzel[3]{R}$ [/mm] .
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:10 Sa 03.02.2007 | Autor: | Zamenhof |
Hallo Loddar!
Vielen Dank für die schnelle Hilfe. Bin echt begeistert von diesem Forum!
Habe jetzt mal versucht den Konvergenzradius mit Euler zu berechnen und habe auch alle Fakultäten raus bekommen. Leider ist die Aufgabe immer noch recht komplex.
[mm] \limes_{n\rightarrow\infty} \bruch{(n+1)(1+\bruch{1}{n+1})^{(n+1)^2}}{(2n+1){(1+\bruch{1}{n})}^{n^2}*2}
[/mm]
Wenn ich Cauchy-Hadamard nehme, hab ich das Problem mit den Fakultäten. Gibts vielleicht noch einen Trick, um die ganze Aufgabe zu verkürzen???
Ah, oder gibts eine Möglichkeit (2n)! auf auf ein Produkt mit n! zu bringen?
Vielen Dank nochmal
|
|
|
|
|
Hallo,
ich bin mir nicht ganz sicher, aber ich glaube, dass du das Euler-Kriterium nicht anwenden kannst/darfst, sondern auf Cauchy-Hadamard zurückgreifen muss, weil zu viele [mm] a_n [/mm] = 0 sind und du nicht durch 0 teilen darfst.
Es ist ja
[mm] \summe_{n=0}^{\infty} \bruch{(n!)^2(1+\bruch{1}{n})^{n^2}}{(2n)!}z^3^n =\summe_{k=0}^{\infty}a_kz^k [/mm] mit:
[mm] a_k=\bruch{(n!)^2(1+\bruch{1}{n})^{n^2}}{(2n)!}, [/mm] falls [mm] \exists n\in\IN:k=3n [/mm] und
[mm] a_k=0, [/mm] sonst
Also ist [mm] \bruch{a_{k+1}}{a_k} [/mm] in vielen Fällen nicht definiert, und du kannst das Eulerkriteriumk nicht so ohne weiteres anwenden, oder?
Ich kann mich da auch irren, aber ich meine, sowas mal gehört zu haben.
Gruß
schachuzipus
|
|
|
|
|
Bekanntlich gilt
[mm]\left( 1 + \frac{1}{n} \right)^n < \operatorname{e} < \left( 1 + \frac{1}{n} \right)^{n+1}[/mm]
wobei die Folgen links und rechts eine Intervallschachtelung von [mm]\operatorname{e}[/mm] bestimmen. Mit der linken Ungleichung folgt:
[mm]\left( 1 + \frac{1}{n} \right)^{n^2} < \operatorname{e}^n[/mm]
Mit der rechten Ungleichung findet man
[mm]\left( 1 + \frac{1}{n} \right)^{n^2} = \frac{\left( \left( 1 + \frac{1}{n} \right)^{n+1} \right)^n}{\left( 1 + \frac{1}{n} \right)^{n}} > \operatorname{e}^{n-1}[/mm]
Vorbehaltlich Konvergenz gilt daher:
[mm]\sum_{n=0}^{\infty}~\frac{\operatorname{e}^{n-1}}{{{2n} \choose n}} \, |z|^{3n} \ \leq \ \sum_{n=0}^{\infty}~\frac{\left( 1 + \frac{1}{n} \right)^{n^2}}{{{2n} \choose n}} \, |z|^{3n} \ \leq \ \sum_{n=0}^{\infty}~\frac{\operatorname{e}^n}{{{2n} \choose n}} \, |z|^{3n}[/mm]
Die Reihen links und rechts sind bis auf den konstanten Faktor [mm]\operatorname{e}[/mm] identisch, haben also denselben Konvergenzradius. Daher muß die gegebene Reihe auch diesen Konvergenzradius haben. Es geht jetzt also darum, den Konvergenzradius [mm]R[/mm] von
[mm]\sum_{n=0}^{\infty}~\frac{\operatorname{e}^n}{{{2n} \choose n}} \, w^n[/mm]
zu bestimmen. Mit [mm]w = z^3[/mm] ist dann [mm]\sqrt[3]{R}[/mm] der Konvergenzradius der [mm]z[/mm]-Reihe, wie Loddar schon gesagt hat.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 So 04.02.2007 | Autor: | Zamenhof |
Hallo. Habe dank eurer Hilfe nun eine Lösung raus! Vielen Dank.
|
|
|
|