Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:22 Do 07.02.2008 | Autor: | side |
Aufgabe | Für [mm] s\in\IR [/mm] betrachte die Potenzreihe [mm] \summe_{n\ge1}\bruch{z^n}{n^s}, z\in\IC
[/mm]
a) Bestimme den Konvergenzradius
b) Sei s>1. Zeige, dass die Potenzreihe normal konvergent in [mm] \left\{z\in\IC| |z|\le1\right\} [/mm] ist. |
Was ist mit Konvergenzradius gemeint? kann mir jemand beschreiben, wie ich den allgemein bestimme? gleiches Problem habe ich mit der normalen Konvergenz in b, und wie bringe ich die zusätzluche Einschränkung in b mit ein?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:59 Do 07.02.2008 | Autor: | leduart |
Hallo side
Du kannst die Aufgabe doch nicht kriegen, wenn ihr Konvergenzradius nicht definiert habt, oder sogar Methoden, ihn zu finden. sonst siehe wikipedia z. Bsp.
b) ist ne ganz normale Konvergenzbetrachtung, wenn du statt z |z| in die Reihe einsetzt.
Gruss leduart
|
|
|
|