www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Potenzmenge P(M) enthaelt 2^M Elemente
Potenzmenge P(M) enthaelt 2^M Elemente < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzmenge P(M) enthaelt 2^M Elemente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:48 Do 24.06.2004
Autor: DerAndiY

Dass die Potenzmenge P(M) einer Menge M [mm] 2^M [/mm] Elemente enthaelt leuchtet ein und weiss man seit der 10. Klasse.
Aber wie kann man einen math. korrekten Beweis dazu fuehren?
Cheers
Andy

        
Bezug
Potenzmenge P(M) enthaelt 2^M Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Do 24.06.2004
Autor: Julius

Hallo Andi!

> Dass die Potenzmenge P(M) einer Menge M [mm]2^M[/mm] Elemente
> enthaelt leuchtet ein und weiss man seit der 10. Klasse.

Uups, ich habe das erst an der Uni gelernt.

> Aber wie kann man einen math. korrekten Beweis dazu
> fuehren?

Für endliches $M$ mit vollständiger Induktion nach der Anzahl $n$ der Elemente von $M$. Für $n=0$ und $n=1$ ist die Behauptung klar.

Ist sie für alle Mengen $N$ mit  $|N|=n$ bereits bewiesen, so wählen wir uns im Falle $|M|=n+1$ ein [mm] $m_0 \in [/mm] M$ beliebig aus und betrachten in $M$ zwei Sorten von Teilmengen: diejenigen die [mm] $m_0$ [/mm] enthalten und diejenigen, die [mm] $m_0$ [/mm] nicht enthalten.

Führe das doch mal sauber zu Ende und stelle deine Lösung zur Kontrolle hier rein...

Liebe Grüße
Julius


Bezug
        
Bezug
Potenzmenge P(M) enthaelt 2^M Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mo 28.06.2004
Autor: DerAndiY

Hallo Julius,
wie Du ja gesagt hast kann man P(M) in zwei Teilmengen [mm] P_1=\{E \subseteq M | m_0 \in M \} [/mm] und [mm] P_2=\{E \subseteq M| m_0 \notin M \} [/mm] unterteilen. Laut Vorraussetzung gilt [mm] \|P_2\| [/mm] = [mm] 2^n. [/mm] Weiterhin gilt laut Vorraussetzung [mm] \|P_1\| [/mm] = [mm] 2^n [/mm] da [mm] P_1 [/mm] diejenigen Mengen aus [mm] P_2 [/mm] sind, denen das Element [mm] m_0 [/mm] hinzugefuegt werden muss. Ergo: [mm] 2^n [/mm] + [mm] 2^n [/mm] = [mm] 2*2^n [/mm] = [mm] 2^n+1 [/mm]

Fuer Anregungen (und vor allem Kritik) waere ich sehr Dankbar.
Auch was Formalitaeten betrifft.
Cheers
Andy  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]