www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Potentiale
Potentiale < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potentiale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 So 01.01.2012
Autor: dodo4ever

Hallo sehr geehrter Matheraum und zunächst einmal ein frohes neues Jahr.

Ich habe leider ein kleines Problem mit folgender Aufgabe:

Für welche Funktionen f besitzt die Funktion (x,y,z) [mm] \mapsto q(x,y,z)=\pmat{ f(x,y,z) \\ z cos(y)+cos(z) \\ sin(y)-ysin(z)} [/mm] ein Potential? Bestimme diese Potentiale.


Die Existenz eines Potential folgt ja aus der Wirbelfreiheit, d.h. rot q=0 und der Konvexität der Funktion.

rot [mm] q=\nabla \times [/mm] q = [mm] \pmat{ \bruch{\partial}{\partial x} \\ \bruch{\partial}{\partial y} \\ \bruch{\partial}{\partial z}} \times \pmat{ f(x,y,z) \\ z cos(y)+cos(z) \\ sin(y)-ysin(z)}=\pmat{ \bruch{\partial}{\partial y}(sin(y)-ysin(z))-\bruch{\partial}{\partial z}(z cos(y)+cos(z)) \\ \bruch{\partial}{\partial z}(f(x,y,z))-\bruch{\partial}{\partial x}(sin(y)-ysin(z)) \\ \bruch{\partial}{\partial x}(zcos(y)+cos(z))-\bruch{\partial}{\partial y}(f(x,y,z))} [/mm]

[mm] \Rightarrow \pmat{cosy-cosy \\ \bruch{\partial}{\partial z}f(x,y,z)-0 \\ 0-\bruch{\partial}{\partial y}f(x,y,z)}=\pmat{0 \\ 0 \\ 0} [/mm]


Es muss ja demnach gelten: [mm] \bruch{\partial}{\partial z}f(x,y,z)=0 [/mm] und  [mm] \bruch{\partial}{\partial y}f(x,y,z)=0 [/mm]


Ich entscheide mich somit z.B. für die Funktion [mm] f(x,y,z)=x^2 [/mm]

[mm] \Rightarrow \pmat{cosy-cosy \\ 0-0 \\ 0-0}=\pmat{0 \\ 0 \\ 0} [/mm]


Das Potential [mm] \varphi [/mm] soll nun aus der Bedingung [mm] -\vec{F}=\nabla \varphi [/mm] berechnet werden

[mm] \bruch{\partial \varphi}{\partial x}=-F_1 [/mm]
[mm] \bruch{\partial \varphi}{\partial y}=-F_2 [/mm]
[mm] \bruch{\partial \varphi}{\partial z}=-F_3 [/mm]

bzw. (1) [mm] \bruch{\partial \varphi}{\partial x}=-x^2 [/mm]
bzw. (2) [mm] \bruch{\partial \varphi}{\partial y}=-zcos(y)-cos(z) [/mm]
bzw. (3) [mm] \bruch{\partial \varphi}{\partial z}=-sin(y)+ysin(z) [/mm]


Im 1. Schritt möchte ich nun (1), also [mm] \bruch{\partial \varphi}{\partial x}=-x^2 [/mm] nach x integrieren.

Ich erhalte [mm] \varphi (x,y,z)=-\integral x^2 dx+C(y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm]

[mm] \Rightarrow \varphi(x,y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm]

Wobei C(y,z) eine Konstante bzgl. x ist.


Im 2. Schritt setze ich nun [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm] in (2), also [mm] \bruch{\partial \varphi}{\partial y}=-zcos(y)-cos(z) [/mm] ein, um C(y,z) zu berechnen.

Ich erhalte [mm] \bruch{\partial}{\partial y}(-\bruch{1}{3}x^3+C(y,z))=-zcos(y)-cos(z) [/mm] und es ergibt sich somit [mm] \bruch{\partial}{\partial y}C(y,z)=-zcos(y)-cos(z) [/mm]

[mm] \Rightarrow C(y,z)=-\integral{zcos(y)-cos(z) dy+D(z)}=-zsin(y)-ycos(z)+D(z) [/mm]

[mm] \Rightarrow \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z) [/mm]

Wobei D(z) eine konstante bzgl. y ist.


Im letzten Schritt möchte ich nun D(z) berechnen, indem ich [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z) [/mm] in (3), also  [mm] \bruch{\partial \varphi}{\partial z}=-sin(y)+ysin(z) [/mm] einsetze.

Ich erhalte [mm] \bruch{\partial}{\partial z}(-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z))=-sin(y)+ysin(z) [/mm]

[mm] \Rightarrow{-sin(y)+ysin(z)+D'(z)=-sin(y)+ysin(z)} [/mm]

D'(z)=0 bzw. [mm] D'(z)=C_0 [/mm]

und es ergibt sich somit das Potential [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+C_0 [/mm]


Meine Frage besteht nun darin zu fragen, ob es prinzipiell reicht zu sagen, dass Jede Funktion f ein Potential besitzt, für die folgendes gilt: [mm] \bruch{\partial}{\partial z}f(x,y,z)=0 [/mm] und  [mm] \bruch{\partial}{\partial y}f(x,y,z)=0, [/mm] denn für alle anderen Fälle wäre das Vektorfeld ja nicht Wirbelfrei.

Es geht somit z.B. auf für [mm] x^k [/mm] mit k [mm] \in \IR [/mm]


Hoffe ihr könnt mir helfen. mfg dodo4ever

        
Bezug
Potentiale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 So 01.01.2012
Autor: leduart

Hallo
Du hast recht, allsrdings solltest du für f(x,y,z)=f)x) schreiben mit F(x) als Stammfunktion und nicht nur [mm] x^r [/mm]
gruss leduart

Bezug
                
Bezug
Potentiale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 So 01.01.2012
Autor: dodo4ever

Hallo leduart und danke die für die Hilfe...

Was meinst du mit nicht nur [mm] x^r??? [/mm] Trigonometrische Funktionen wollte ich jetzt ausschließen. Kosinus und Sinus sind ja abwechselnd konvex und konkav.

Für welche Funktionen gibt es denn noch Potentiale??? Bzw. Wie kann ich die frage allgemein beantworten ohne gleich ne ganze Seite voller Funktionen voll zu schreiben???

Wie gesagt, danke noch einmal. MfG dodo4ever

Bezug
                        
Bezug
Potentiale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 So 01.01.2012
Autor: MathePower

Hallo dodo4ever,

> Hallo leduart und danke die für die Hilfe...
>  
> Was meinst du mit nicht nur [mm]x^r???[/mm] Trigonometrische
> Funktionen wollte ich jetzt ausschließen. Kosinus und
> Sinus sind ja abwechselnd konvex und konkav.
>  
> Für welche Funktionen gibt es denn noch Potentiale??? Bzw.
> Wie kann ich die frage allgemein beantworten ohne gleich ne
> ganze Seite voller Funktionen voll zu schreiben???
>  


Das gegebene  Feld muss auf einer einfach zusammenhängenden Menge
stetig differenzierbar sein. Damit auch f.


> Wie gesagt, danke noch einmal. MfG dodo4ever


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]