www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Potentiale
Potentiale < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potentiale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Sa 31.12.2011
Autor: dodo4ever

Hallo sehr geehrter Matheraum und zunächst einmal ein frohes neues Jahr.

Ich habe leider ein kleines Problem mit folgender Aufgabe:

Für welche Funktionen f besitzt die Funktion (x,y,z) [mm] \mapsto q(x,y,z)=\pmat{ f(x,y,z) \\ z cos(y)+cos(z) \\ sin(y)-ysin(z)} [/mm] ein Potential? Bestimme diese Potentiale.


Die Existenz eines Potential folgt ja aus der Wirbelfreiheit, d.h. rot q=0 und der Konvexität der Funktion.

rot [mm] q=\nabla \times [/mm] q = [mm] \pmat{ \bruch{\partial}{\partial x} \\ \bruch{\partial}{\partial y} \\ \bruch{\partial}{\partial z}} \times \pmat{ f(x,y,z) \\ z cos(y)+cos(z) \\ sin(y)-ysin(z)}=\pmat{ \bruch{\partial}{\partial y}(sin(y)-ysin(z))-\bruch{\partial}{\partial z}(z cos(y)+cos(z)) \\ \bruch{\partial}{\partial z}(f(x,y,z))-\bruch{\partial}{\partial x}(sin(y)-ysin(z)) \\ \bruch{\partial}{\partial x}(zcos(y)+cos(z))-\bruch{\partial}{\partial y}(f(x,y,z))} [/mm]

[mm] \Rightarrow \pmat{cosy-cosy \\ \bruch{\partial}{\partial z}f(x,y,z)-0 \\ 0-\bruch{\partial}{\partial y}f(x,y,z)}=\pmat{0 \\ 0 \\ 0} [/mm]


Es muss ja demnach gelten: [mm] \bruch{\partial}{\partial z}f(x,y,z)=0 [/mm] und  [mm] \bruch{\partial}{\partial y}f(x,y,z)=0 [/mm]


Ich entscheide mich somit z.B. für die Funktion [mm] f(x,y,z)=x^2 [/mm]

[mm] \Rightarrow \pmat{cosy-cosy \\ 0-0 \\ 0-0}=\pmat{0 \\ 0 \\ 0} [/mm]


Das Potential [mm] \varphi [/mm] soll nun aus der Bedingung [mm] -\vec{F}=\nabla \varphi [/mm] berechnet werden

[mm] \bruch{\partial \varphi}{\partial x}=-F_1 [/mm]
[mm] \bruch{\partial \varphi}{\partial y}=-F_2 [/mm]
[mm] \bruch{\partial \varphi}{\partial z}=-F_3 [/mm]

bzw. (1) [mm] \bruch{\partial \varphi}{\partial x}=-x^2 [/mm]
bzw. (2) [mm] \bruch{\partial \varphi}{\partial y}=-zcos(y)-cos(z) [/mm]
bzw. (3) [mm] \bruch{\partial \varphi}{\partial z}=-sin(y)+ysin(z) [/mm]


Im 1. Schritt möchte ich nun (1), also [mm] \bruch{\partial \varphi}{\partial x}=-x^2 [/mm] nach x integrieren.

Ich erhalte [mm] \varphi (x,y,z)=-\integral x^2 dx+C(y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm]

[mm] \Rightarrow \varphi(x,y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm]

Wobei C(y,z) eine Konstante bzgl. x ist.


Im 2. Schritt setze ich nun [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm] in (2), also [mm] \bruch{\partial \varphi}{\partial y}=-zcos(y)-cos(z) [/mm] ein, um C(y,z) zu berechnen.

Ich erhalte [mm] \bruch{\partial}{\partial y}(-\bruch{1}{3}x^3+C(y,z))=-zcos(y)-cos(z) [/mm] und es ergibt sich somit [mm] \bruch{\partial}{\partial y}C(y,z)=-zcos(y)-cos(z) [/mm]

[mm] \Rightarrow C(y,z)=-\integral{zcos(y)-cos(z) dy+D(z)}=-zsin(y)-ycos(z)+D(z) [/mm]

[mm] \Rightarrow \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z) [/mm]

Wobei D(z) eine konstante bzgl. y ist.


Im letzten Schritt möchte ich nun D(z) berechnen, indem ich [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z) [/mm] in (3), also  [mm] \bruch{\partial \varphi}{\partial z}=-sin(y)+ysin(z) [/mm] einsetze.

Ich erhalte [mm] \bruch{\partial}{\partial z}(-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z))=-sin(y)+ysin(z) [/mm]

[mm] \Rightarrow{-sin(y)+ysin(z)+D'(z)=-sin(y)+ysin(z)} [/mm]

D'(z)=0 bzw. [mm] D'(z)=C_0 [/mm]

und es ergibt sich somit das Potential [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+C_0 [/mm]


Meine Frage besteht nun darin zu fragen, ob es prinzipiell reicht zu sagen, dass Jede Funktion f ein Potential besitzt, für die folgendes gilt: [mm] \bruch{\partial}{\partial z}f(x,y,z)=0 [/mm] und  [mm] \bruch{\partial}{\partial y}f(x,y,z)=0, [/mm] denn für alle anderen Fälle wäre das Vektorfeld ja nicht Wirbelfrei.

Es geht somit z.B. auf für [mm] x^k [/mm] mit k [mm] \in \IR [/mm]


Hoffe ihr könnt mir helfen. mfg dodo4ever

        
Bezug
Potentiale: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 So 01.01.2012
Autor: chrisno

Vorweg: ich finde keine wesentlichen Fehler, habe aber ein paar Anmerkungen. Allerdings liegt mien Training zu diesem Thema Jahrzehnte zurück.

>

.....

>  
> [mm]\Rightarrow \pmat{cosy-cosy \\ \bruch{\partial}{\partial z}f(x,y,z)-0 \\ 0-\bruch{\partial}{\partial y}f(x,y,z)}=\pmat{0 \\ 0 \\ 0}[/mm]
>  

cos y - cos y = 0

>
> Es muss ja demnach gelten: [mm]\bruch{\partial}{\partial z}f(x,y,z)=0[/mm]
> und  [mm]\bruch{\partial}{\partial y}f(x,y,z)=0[/mm]
>  
>
> Ich entscheide mich somit z.B. für die Funktion
> [mm]f(x,y,z)=x^2[/mm]
>  

Ok, aber allgemeiner steht da, dass f nur von x abhängt (diffbar)

> [mm]\Rightarrow \pmat{cosy-cosy \\ 0-0 \\ 0-0}=\pmat{0 \\ 0 \\ 0}[/mm]
>  
>
> Das Potential [mm]\varphi[/mm] soll nun aus der Bedingung
> [mm]-\vec{F}=\nabla \varphi[/mm] berechnet werden

Warum wechselst Du hier von q auf F?

>  

....

>  
> und es ergibt sich somit das Potential
> [mm]\varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+C_0[/mm]
>  
>
> Meine Frage besteht nun darin zu fragen, ob es prinzipiell
> reicht zu sagen, dass Jede Funktion f ein Potential
> besitzt,

Hier stimmt Dein Text nicht. Es geht um eine Funktion q, die unter bestimmten Bedingungen ein Potential besitzt.

> für die folgendes gilt: [mm]\bruch{\partial}{\partial z}f(x,y,z)=0[/mm]
> und  [mm]\bruch{\partial}{\partial y}f(x,y,z)=0,[/mm] denn für alle
> anderen Fälle wäre das Vektorfeld ja nicht Wirbelfrei.
>  
> Es geht somit z.B. auf für [mm]x^k[/mm] mit k [mm]\in \IR[/mm]

Das habe ich oben versucht, etwas anders zu formulieren. exp( x ) geht doch auch.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]