www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Polarkoordinaten
Polarkoordinaten < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Fr 08.08.2008
Autor: tedd

Aufgabe
Skizzieren Sie die Graphen der folgenden Polarkoordinatenfunktion und transformieren Sie ihre Gleichung auf kartesische Koordinaten:
[mm] r(\phi)=tan(\phi) [/mm]

Wieder ein neues Thema für mich...
Kann man den Graph ohne groß rumzurechnen zeichnen?
Habe Werte für r von 0 bis [mm] 2\pi [/mm] in [mm] \bruch{1}{12}\pi [/mm] Schritten ausgerechnet und eine Wertetabelle erstellt.Nur irgendwie sieht mein Graph am Ende nicht so aus wie hier:
[]fooplot

und in kartesische Koordinaten kriege ich das auch nicht transformiert :(
[mm] r=tan(\phi) [/mm]
[mm] \sqrt{x^2+y^2}=tan(\arctan(\bruch{y}{x})) [/mm]
[mm] \sqrt{x^2+y^2}=\bruch{y}{x} [/mm]
bis hierhin richtig?
[mm] x^2+y^2=\bruch{y^2}{x^2} [/mm]
[mm] x^2(x^2+y^2)=y^2 [/mm]
und jetzt?
Danke und Gruß,
tedd

        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Fr 08.08.2008
Autor: MathePower

Hallo tedd,

> Skizzieren Sie die Graphen der folgenden
> Polarkoordinatenfunktion und transformieren Sie ihre
> Gleichung auf kartesische Koordinaten:
>  [mm]r(\phi)=tan(\phi)[/mm]
>  Wieder ein neues Thema für mich...
>  Kann man den Graph ohne groß rumzurechnen zeichnen?


Sicher geht das.

Verwende hier die Polarkoordinaten verwendest, ist

[mm]x=r\left(\phi\right)*\cos\left(\phi\right)[/mm]

[mm]y=r\left(\phi\right)*\sin\left(\phi\right)[/mm]


>  Habe Werte für r von 0 bis [mm]2\pi[/mm] in [mm]\bruch{1}{12}\pi[/mm]
> Schritten ausgerechnet und eine Wertetabelle erstellt.Nur
> irgendwie sieht mein Graph am Ende nicht so aus wie hier:
>  
> []fooplot
>  
> und in kartesische Koordinaten kriege ich das auch nicht
> transformiert :(
>  [mm]r=tan(\phi)[/mm]
>  [mm]\sqrt{x^2+y^2}=tan(\arctan(\bruch{y}{x}))[/mm]
>  [mm]\sqrt{x^2+y^2}=\bruch{y}{x}[/mm]
>  bis hierhin richtig?


[ok]


>  [mm]x^2+y^2=\bruch{y^2}{x^2}[/mm]
>  [mm]x^2(x^2+y^2)=y^2[/mm]
>  und jetzt?

Eigentlich bist Du jetzt fertig.

Diese Gleichung kannst Du jetzt beispielsweise nach y auflösen.


>  Danke und Gruß,
>  tedd


Gruß
MathePower

Bezug
                
Bezug
Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 So 10.08.2008
Autor: tedd

Hi!
Danke Mathepower für die Antwort [ok]
Weiter nach y umgestellt habe ich jetzt so(hoffentlich richtig):
[mm] x^2(x^2+y^2)=y^2 [/mm]

[mm] x^4+x^2y^2-y^2=0 [/mm]
[mm] \bruch{x^4}{y^2}+x^2-1=0 [/mm]
[mm] \bruch{x^4}{y^2}=1-x^2 [/mm]
[mm] y^2=\bruch{1-x^2}{x^4} [/mm]
[mm] y=\sqrt{\bruch{1-x^2}{x^4}} [/mm]

Aber mit dem skizzieren habe ich immernoch Probleme...

Also das
$ [mm] x=r\left(\phi\right)\cdot{}\cos\left(\phi\right) [/mm] $
und
$ [mm] y=r\left(\phi\right)\cdot{}\sin\left(\phi\right) [/mm] $
ist klar aber dafür brauche ich doch erstmal Werte für [mm]r[/mm] oder?
Soll ich diese Werte dann vorher noch über [mm] r(\phi)=tan(\phi) [/mm] in einer Wertetabelle ausrechnen(dann müsste ich doch eigtl schon den Graph zeichnen können?)
Danke und besten Gruß,
tedd

Bezug
                        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 So 10.08.2008
Autor: MathePower

Hallo tedd,

> Hi!
>  Danke Mathepower für die Antwort [ok]
>  Weiter nach y umgestellt habe ich jetzt so(hoffentlich
> richtig):
>  [mm]x^2(x^2+y^2)=y^2[/mm]
>  
> [mm]x^4+x^2y^2-y^2=0[/mm]
>  [mm]\bruch{x^4}{y^2}+x^2-1=0[/mm]
>  [mm]\bruch{x^4}{y^2}=1-x^2[/mm]
>  [mm]y^2=\bruch{1-x^2}{x^4}[/mm]

Da hast Du nicht richtig umgeformt:

[mm]y^{2}=\red{\bruch{x^{4}}{1-x^{2}}}[/mm]

[mm]\Rightarrow y= \pm \bruch{x^{2}}{\wurzel{1-x^{2}}}[/mm]

>  [mm]y=\sqrt{\bruch{1-x^2}{x^4}}[/mm]
>  
> Aber mit dem skizzieren habe ich immernoch Probleme...
>  
> Also das
>  [mm]x=r\left(\phi\right)\cdot{}\cos\left(\phi\right)[/mm]
>  und
>  [mm]y=r\left(\phi\right)\cdot{}\sin\left(\phi\right)[/mm]
>  ist klar aber dafür brauche ich doch erstmal Werte für [mm]r[/mm]
> oder?


Ja.


>  Soll ich diese Werte dann vorher noch über
> [mm]r(\phi)=tan(\phi)[/mm] in einer Wertetabelle ausrechnen(dann
> müsste ich doch eigtl schon den Graph zeichnen können?)

Setze einfach [mm]r\left(\phi\right)=\tan\left(\phi\right)[/mm] in die Gleichungen für x und y ein, dann erhältst Du zwar eine Parameterdarstellung.
Die sollte man aber auch ohne Probleme zeichnen lassen können.

>  Danke und besten Gruß,
>  tedd


Gruß
MathePower

Bezug
                                
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 So 10.08.2008
Autor: tedd

Hey Mathepower!
Danke für die Hilfe,[ok]
ich werde mich noch ein bisschen ransetzen und probieren ob es mit anderen Aufgaben klappt:)
Gruß,
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]