Poisson Formel < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ich muss bei einer Aufgabe folgende Gleichung lösen:
[mm] $2\sum_{l\in\mathbb{Z}}f(2l)=\sum_{k\in\mathbb{Z}}\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}$
[/mm]
für die Funktion [mm] $f:=1_{\left[-\frac{1}{2},\frac{1}{2}\right]}\ast 1_{\left[-\frac{1}{2},\frac{1}{2}\right]}=(1+|x|)_+$ [/mm] |
Hallo zusammen!
Wie gesagt muss ich obige Gleichung lösen und bin dabei etwas unsicher. Folgendes habe ich gemacht:
[mm] $2\sum_{l\in\mathbb{Z}}f(2l)=\sum_{k\in\mathbb{Z}}\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}$
[/mm]
[mm] \Longleftrightarrow$2=\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}\Bigr|_0+2\sum_{k=1}^{\infty}\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}$
[/mm]
Für den "Nuller Term hab ich dann zweimal l'Hospital angewendet.
Dabei kam dann raus:
[mm] $\lim\limits_{k\rightarrow 0}\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}=1$
[/mm]
Darf ich das so machen? Und kann mir jemand erklären wie man auf den zweiten Ausdruck für $f$ kommt. Irgendwie bekomm ich das nicht raus mit der Faltung!
Danke!
Gruß
Deuterinomium
|
|
|
|
L'Hospital ist überflüssig, aber natürlich möglich. Aus dem bekannten
[mm]\lim_{t \to 0} \frac{\sin t}{t} = 1[/mm]
folgt wegen der Stetigkeit der Quadratfunktion sofort
[mm]\lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 = 1[/mm]
Und mit der Substitution [mm]t = \frac{\pi}{2} s[/mm] erhältst du, weil mit [mm]s \to 0[/mm] auch [mm]t \to 0[/mm] gilt:
[mm]\lim_{s \to 0} \left( \frac{\sin \left( \frac{\pi}{2} s \right)}{ \frac{\pi}{2} s } \right)^2 = 1[/mm]
Wenn du also in der Summe [mm]\sum_{k \in \mathbb{Z}}[/mm] den Term für [mm]k=0[/mm] durch die stetige Ergänzung der Funktion ersetzen sollst (ich kenne den Zusammenhang der Aufgabe nicht, vermute aber aus deinen Ausführungen, daß das so ist), dann ist 1 der korrekte Wert. Für alle anderen geraden [mm]k[/mm] verschwindet der Summand, und bei den verbleibenden ungeraden [mm]k[/mm] ändert sich der Summand bei einem Vorzeichenwechsel nicht. Daher gilt:
[mm]\sum_{k \in \mathbb{Z}} \frac{\sin^2 \left( \frac{\pi}{2} k \right)}{\left( \frac{\pi}{2} k \right)^2} = 1 + \frac{8}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}[/mm]
Jetzt gilt ja (ich hoffe, das darfst du verwenden):
[mm]\text{(1)} \ \ \ \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots = \frac{\pi^2}{6}[/mm]
Betrachtet man nur die Summanden mit geradem Nenner, so gilt
[mm]\text{(2)} \ \ \ \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \ldots = \frac{1}{4} \left( \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \right) = \frac{1}{4} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{24}[/mm]
Und die Subtraktion von [mm]\text{(1)}[/mm] und [mm]\text{(2)}[/mm] zeigt:
[mm]\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{8}[/mm]
Und was deine Funktion [mm]f[/mm] angeht, müßte das nicht
[mm]f(x) = 1 - |x|[/mm] für [mm]|x| \leq 1[/mm], und [mm]= 0[/mm] sonst
heißen? Dann hat ja die Summe über [mm]l \in \mathbb{Z}[/mm] nur einen nichtverschwindenden Summanden, nämlich den für [mm]l=0[/mm].
|
|
|
|