Picard-Iteration < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:42 Mi 15.11.2006 | Autor: | Riley |
Aufgabe | Zeigen Sie, dass die Picard-Iteration bzgl der Funktion [mm] f(x)=\sqrt{2+x} [/mm] für [mm] x^{(0)} \in [/mm] [0,2] gegen einen Fixpunkt konvergiert. Wie lautet dieser Fixpunkt, ist er eindeutig? |
Hallo!
Hab eine Frage bzgl Abschätzen.
Um die Kontraktionseigenschaft zu zeigen, hab ich angeschaut:
[mm] L=sup\{\||J(x)\|| : x\in D\} [/mm] = sup [mm] \{|\frac{1}{2\sqrt{2+x}}:x\inD} [/mm] = [mm] \frac{1}{2\sqrt{2}} [/mm] < 1.
wie kann ich nun bei der selbstabbildungseigenschaft zeigen,d ass
[mm] f(x)=\sqrt{2+x} \le [/mm] 2 und f(x) [mm] \ge [/mm] 0 für alle [mm] x\in[0,2] [/mm] gilt??
ich mein [mm] f(0)=\sqrt{2} [/mm] und f(2)=2 , aber wie zeig ich dass für die x zwischendrin der fktwert auch in diesem intervall liegt?
einfach weil die wurzelfunktion monoton wächst?
viele grüße
riley
|
|
|
|
Hallo Riley,
> Zeigen Sie, dass die Picard-Iteration bzgl der Funktion
> [mm]f(x)=\sqrt{2+x}[/mm] für [mm]x^{(0)} \in[/mm] [0,2] gegen einen Fixpunkt
> konvergiert. Wie lautet dieser Fixpunkt, ist er eindeutig?
> Hallo!
> Hab eine Frage bzgl Abschätzen.
> Um die Kontraktionseigenschaft zu zeigen, hab ich
> angeschaut:
> [mm]L=sup\{\||J(x)\|| : x\in D\}[/mm] = sup
> [mm]\{|\frac{1}{2\sqrt{2+x}}:x\inD}[/mm] = [mm]\frac{1}{2\sqrt{2}}[/mm] < 1.
>
> wie kann ich nun bei der selbstabbildungseigenschaft
> zeigen,d ass
> [mm]f(x)=\sqrt{2+x} \le[/mm] 2 und f(x) [mm]\ge[/mm] 0 für alle [mm]x\in[0,2][/mm]
> gilt??
> ich mein [mm]f(0)=\sqrt{2}[/mm] und f(2)=2 , aber wie zeig ich dass
> für die x zwischendrin der fktwert auch in diesem intervall
> liegt?
> einfach weil die wurzelfunktion monoton wächst?
viele Grüße
mathemaduenn
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:11 Sa 18.11.2006 | Autor: | Riley |
hi mathemaduenn,
cool, vielen dank fürs durschauen.
viele grüße
riley
|
|
|
|