(Phasen-)Fluss einer DGL < DGL < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:35 Do 21.04.2011 | Autor: | path |
Aufgabe | Def.: Das Vektorfeld f: U [mm] \to \IR^{n} [/mm] auf der offenen Menge U [mm] \subseteq \IR^{n} [/mm] sei lokal Lipschitz-stetig. Wir betrachten die DGL [mm] \dot{x}=f(x).
[/mm]
1. Existiert für alle [mm] x_{0} \in [/mm] U eine Lösung [mm] \phi_{x_{0}}: \IR \to [/mm] U des AWP [mm] \dot{x}=f(x), x(0)=x_{0}, [/mm] dann heißt die Abbildung [mm] \Phi [/mm] : [mm] \IR [/mm] x U [mm] \to [/mm] U , (t,x) [mm] \mapsto \phi_{x}(t) [/mm] Phasenfluss der DGL.
2. Das Bild [mm] \phi(I) \subseteq [/mm] U einer Lösungskurve [mm] \phi [/mm] : I [mm] \to [/mm] U der DGL heißt Orbit . Für x [mm] \in [/mm] U heißt [mm] O(x):=\Phi(\IR,x) [/mm] Orbit durch x. |
Hallo Matheraum!
Meine allererste Frage:
Ich habe demnächst eine Klausur in gewöhnlichen DGL, und habe mir im Vorfeld im Internet ein paar Videos angeschaut, wie DGL praktisch gelöst werden.
Wenn ich mir aber unser Skript anschaue, verstehe ich leider nur Bahnhof.
Vor allem unter den Definitionen von Phasenfluss und Orbit kann ich mir nichts vorstellen. Ich hoffe, jemand könnte das anschaulich erklären.
Vielen Dank schonmal!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:23 Fr 22.04.2011 | Autor: | rainerS |
Hallo!
Erstmal herzlich
> Def.: Das Vektorfeld f: U [mm]\to \IR^{n}[/mm] auf der offenen Menge
> U [mm]\subseteq \IR^{n}[/mm] sei lokal Lipschitz-stetig. Wir
> betrachten die DGL [mm]\dot{x}=f(x).[/mm]
> 1. Existiert für alle [mm]x_{0} \in[/mm] U eine Lösung
> [mm]\phi_{x_{0}}: \IR \to[/mm] U des AWP [mm]\dot{x}=f(x), x(0)=x_{0},[/mm]
> dann heißt die Abbildung [mm]\Phi[/mm] : [mm]\IR[/mm] x U [mm]\to[/mm] U , (t,x)
> [mm]\mapsto \phi_{x}(t)[/mm] Phasenfluss der DGL.
> 2. Das Bild [mm]\phi(I) \subseteq[/mm] U einer Lösungskurve [mm]\phi[/mm] :
> I [mm]\to[/mm] U der DGL heißt Orbit . Für x [mm]\in[/mm] U heißt
> [mm]O(x):=\Phi(\IR,x)[/mm] Orbit durch x.
>
>
> Hallo Matheraum!
> Meine allererste Frage:
>
> Ich habe demnächst eine Klausur in gewöhnlichen DGL, und
> habe mir im Vorfeld im Internet ein paar Videos angeschaut,
> wie DGL praktisch gelöst werden.
> Wenn ich mir aber unser Skript anschaue, verstehe ich
> leider nur Bahnhof.
> Vor allem unter den Definitionen von Phasenfluss und Orbit
> kann ich mir nichts vorstellen. Ich hoffe, jemand könnte
> das anschaulich erklären.
Da gibt es eine einfache physikalische Bedeutung; die mathematische Beschreibung ist deren Abstraktion.
Nehmen wir mal an, die gegebene DGL beschreibt die Bewegung einer Masse unter dem Einfluss (konvervativer) Kräfte. Wenn ist den Ort [mm] $x_0$ [/mm] der Masse zum Zeitpunkt $t=0$ kenne, so gibt mir die Lösung der DGL den Ort zu einem beliebigen Zeitpunkt t. Die Lösung [mm]\phi_{x_{0}}[/mm] zum Anfangswert [mm] $x_0$ [/mm] definiert die Bahnkurve der Masse im Raum.
Sei jetzt die Masse zu irgendeinem Zeitpunkt [mm] $t_0$ [/mm] am Punkt x der Bahn, also [mm] $\phi_{x_{0}}(t_0) [/mm] = x$. Wenn die Zeit t vergangen ist, wird sie am Ort [mm] $y=\phi_{x_{0}}(t_0+t)$ [/mm] sein. Unter den Voraussetzungen an die Funktion f gibt es nun eine Abbildung, den Phasenfluss [mm] $\Phi$ [/mm] mit [mm] $y=\Phi(t,x)$. [/mm] Beachte, dass hier der Anfangswert [mm] $x_0$ [/mm] nicht mehr vorkommt; diese Abbildung beschreibt also alle Lösungen auf einmal, unabhängig vom Anfangswert: Es ist [mm] $\phi_{x_{0}}(t) [/mm] = [mm] \Phi(t,x_0)$ [/mm] .
Der Phasenfluss sagt mir also, wo sich die Masse in der Zukunft befinden wird (oder in der Vergangenheit befunden hat), wenn ich nur einen einzigen Bahnpunkt habe. Daher ist die Menge der Punkte [mm] $\{\Phi(t,x)\mid t\in\IR, \text{ x fest}\}$ [/mm] gerade die gesamte Bahnkurve, die durch x geht, und diese ist eindeutig durch x bestimmt. Daher der Name Orbit.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:54 Fr 22.04.2011 | Autor: | path |
Ist ja eigentlich echt einleuchtend, so wie du das erklärt hast, aber als ich mir die Definition daheim angeschaut hab, bin ich nicht drauf gekommen. Hab auch vorher im Internet keine so anschauliche Erklärung gefunden.
Vielen Dank!
|
|
|
|