Permutationsmatrizen orthogona < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Eine Matrix P [mm] \in [/mm] M(nxn, K) Heißt Permutationsmatrix, wenn in jeder Zeile und jeder Spalte genau 1 Wert 1 und der Rest 0 ist.
Zeigen Sie: Für alle Permutationsmatrizen P [mm] \in [/mm] M(nxn, K ) gilt:
[mm] P^{-1} [/mm] = [mm] P^{T} [/mm] . |
Also ich habe diesen Beweis zu führen und habe mir bisher folgende überlegungen gemacht:
Also ich habe an einem Beispiel erstmal erkannt, dass diese Permutationsmatrizen zu sich selbst invers sind.
Außerdem ist mir klar, dass für die Einträge, wenn ich die Transponierte zu P bilde, gilt:
aus xij -> xji (also Eintrag x in Zeile i u. Spalte j zu Zeile j und Spalte i)
Um die Inverse einer Permutationsmatrix zu bilden, ist es außerdem nur notwendig Zeilen oder Spalten zu tauschen, also ich brauche keine Multiplikation etc.
Deswegen besteht sowohl die transponierte als auch die inverse schonmal nur aus 1en und nullen.
Ich weiß auch, dass, wenn ich P transponiere, ich wieder eine Permutationsmatrix erhalte, denn es gilt ja auch für die Spalten, dass in jeder spalte nur einmal eine 1 steht.
So, das waren erstmal alle Gedankengänge dazu. Aber irgendwie fehlt mir noch ein Denkanstoß, damit ich genau weiß, wie ich jetzt zeige, dass beide Matrizen gleich sind. Ich hatte mir gedacht, dass ich viell. zeigen könnte, dass die Permutationsmatrix mit ihrer Transponierten multipliziert immer die Einheitsmatrix ergibt, aber ich weiß nicht genau, wie ich das formal machen kann.
Wär nett ,wenn mir jemand eine Anregung geben könnte. Mehr ist bestimmt gar nicht nötig, weil ich eigentlich denke ,dass das an sich nicht so schwer sein dürfte...
Vielen dank im Voraus, die_conny
|
|
|
|
Hi,
also in meinen Augen ist da gar net so viel zu zeigen dran: Du hast also eine Permutationsmatrix P. Bezeichne mal die Zeilen von P mit [mm] x_{i}, [/mm] i=1,..,n. Dann gilt [mm] x_i x_j^{t} [/mm] = [mm] \delta_{ij}. [/mm] Jetzt das ganze noch einsetzen:
[mm] PP^t [/mm] = A = [mm] (a_{ij} [/mm] ), wobei [mm] a_{ij} [/mm] = [mm] \delta_{ij}. (\delta_{ij} [/mm] bezeichne dabei das Kronecker-Delta). Also ist A die Einheitsmatrix.
Und damit ist der Beweis denke ich fertig .
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:24 Sa 26.01.2008 | Autor: | die_conny |
Danke für die schnelle antwort!
das hilft mir weiter ;)
|
|
|
|