www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Permutation
Permutation < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Produkt von Transposition
Status: (Frage) beantwortet Status 
Datum: 16:35 Di 11.11.2008
Autor: Schneuzle

Aufgabe
sigma = [mm] \pmat{ 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3} [/mm]
t = [mm] \pmat{1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1} [/mm]

produkt sigma*t=  [mm] \pmat{ 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3} [/mm]
alles in eckigen Klammern...weiß nicht wie das geht

Wieso ist das so?
Wie berechnet man das Produkt mit einer Transpostion?
Ich habe das im Vorlesungsskript gelesen, aber eben ohne Begründung wie das berechnet wird!

        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Di 11.11.2008
Autor: angela.h.b.


> [mm] \sigma [/mm] = [mm]\pmat{ 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3}[/mm]
>  [mm] \tau [/mm] = [mm]\pmat{1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1}[/mm]
>  
> produkt [mm] \sigma*\tau=[/mm]   [mm]\pmat{ 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3}[/mm]
>  
> alles in eckigen Klammern...weiß nicht wie das geht
>  Wieso ist das so?
>  Wie berechnet man das Produkt mit einer Transpostion?
>  Ich habe das im Vorlesungsskript gelesen, aber eben ohne
> Begründung wie das berechnet wird!

Hallo,

das, was Du schreibst irritiert mich. Wenn man mit diesen Permutationen so rechnet wie üblich, ist nämlich [mm] \pmat{ 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3}=\tau [/mm] * [mm] \sigma. [/mm]

Vielleicht schreibst Du mal auf, was im Buch/Skript zur Nacheinanderausführung von Permutationen steht..

Ich mache Dir das jetzt erstmal so vor, wie es an den meisten Orten üblich ist:

[mm] \tau [/mm] = [mm][mm] \pmat{1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1} [/mm] steht dafür, daß die Abbildung [mm] \tau [/mm] folgendes tut:
[mm] 1\mapsto [/mm] 4
[mm] 2\mapsto [/mm] 2
[mm] 3\mapsto [/mm] 3
[mm] 4\mapsto [/mm] 1.

[mm] \sigma [/mm] = [mm][mm] \pmat{ 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3} [/mm] steht dafür, daß die Abbildung [mm] \sigma [/mm]  folgendes tut:
[mm] 1\mapsto [/mm] 4
[mm] 2\mapsto [/mm] 1
[mm] 3\mapsto2 [/mm]
[mm] 4\mapsto [/mm] 3.

[mm] \tau \circ \sigma [/mm] ist die Hintereinanderausführung, rechts beginnend, wie bei der Verkettung von Funktionen. es ist ja auch eine Verkettung von Funktionen.

[mm] \pmat{1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1}\circ \pmat{ 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3}= \pmat{ 1 & 2 & 3 & 4 \\ ... & ...& ...& ...} [/mm]

Jetzt geht' s  los.  Worauf wird bei der Verkettung die 1 abgebildet?  

[mm] \pmat{1 & 2 & 3 &\green{4} \\ 4 & 2 & 3 & \green{1}}\circ \pmat{ \red{1} & 2 & 3 & 4 \\ \red{4} & 1 & 2 & 3}= \pmat{ \red{1} & 2 & 3 & 4 \\ \green{1} & ...& ...& ...} [/mm]

[mm] \red{1}\mapsto \red{4} [/mm]  ,   [mm] \green{4}\mapsto \green{1}, [/mm] also [mm] \red{1}\mapsto \green{1} [/mm]


Worauf wird bei der Verkettung die 2  abgebildet?  

[mm] \pmat{\green{1} & 2 & 3 & 4 \\ \green{4} & 2 & 3 & 1}\circ \pmat{ 1 & \red{2} & 3 & 4 \\ 4 & \red{1} & 2 & 3}= \pmat{ 1 & 2 & 3 & 4 \\ 1 & \green{4}& ...& ...} [/mm]


Versuch nun die anderen beiden.

Nochmal. ich habe Dir gezeigt, wie das normalerweise gemacht wird, und Du mußt herausfinden, ob das bei Euch genau andersrum läuft.

Gruß v. Angela





Bezug
                
Bezug
Permutation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 Di 11.11.2008
Autor: Schneuzle

Ja sorry, hab das Produkt falsch rum geschrieben.

Hat mir sehr geholfen...danke!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]