www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Partitialbruchzerlegung
Partitialbruchzerlegung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partitialbruchzerlegung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:24 Di 07.06.2005
Autor: Fruchtsaft

Hallo,

ich habe Probleme bei der Vorgehensweise mit der Partialbruchzerlegung..

Ich habe folgenden Bruch [mm]x^3-3x^2+2x[/mm] gegeben..

Laut meinem Script wende ich nun einmal das Horner-Schema an zur Bestimmung der Nullstellen...
    1 -3   2
-2     2  -2
    1 -1  [0] --> Das habe ich nun raus...

Also ist -2 eine Nullstelle des Nenners, richitg?

Wie gehe ich jetzt weiter vor, um meine A, B ,C mit entsprechendem Nenner zu erhalten?

Danke

Gruss

        
Bezug
Partitialbruchzerlegung: Koeffizientenvergleich
Status: (Antwort) fertig Status 
Datum: 15:41 Di 07.06.2005
Autor: Roadrunner

Hallo Fruchtsaft!


> Ich habe folgenden Bruch [mm]x^3-3x^2+2x[/mm] gegeben..

Du meinst wohl: [mm] $\bruch{1}{x^3-3x^2+2x}$ [/mm]



> Laut meinem Script wende ich nun einmal das Horner-Schema
> an zur Bestimmung der Nullstellen...
>      1 -3   2
>  -2     2  -2
>      1 -1  [0] --> Das habe ich nun raus...

Mußt Du denn mit dem Horner-Schema arbeiten?

Wenn Du zunächst $x$ ausklammerst, erhältst Du eine quadratische Gleichung, die Du z.B. mit der MBp/q-Formel lösen kannst.


> Also ist -2 eine Nullstelle des Nenners, richitg?

[notok] Ich erhalte: [mm] $x_1 [/mm] \ = \ 0$    [mm] $x_2 [/mm] \ = \ +1$    [mm] $x_3 [/mm] \ = \ +2$    


> Wie gehe ich jetzt weiter vor, um meine A, B ,C mit
> entsprechendem Nenner zu erhalten?

[mm] $\bruch{1}{x^3-3x^2+2x} [/mm] \ = \ [mm] \bruch{A}{x} [/mm] + [mm] \bruch{B}{x-1} [/mm] + [mm] \bruch{C}{x-2}$ [/mm]

Fasse diese drei Brüche auf der rechten Seite mal zusammen und führe dann einen Koeffizientenvergleich durch.

Solltest Du noch Fragen haben, so melde Dich doch nochmal mit Deinem (Zwischen-)Ergebnis.


Gruß vom
Roadrunner


Bezug
                
Bezug
Partitialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 07.06.2005
Autor: Fruchtsaft

Generell ging es mir nur um den Nenner.. Der Bruch heisst [mm]2x^2-4x+18/x^3-3x^2+2x[/mm]

Also ich muss nicht mit dem Horner-Schema arbeiten, aber dennoch würde mich auch interessieren, wie mit diesem die Nullstellen ermittelt werden..!!?? Scheint mir einfacher als z.B. mit der p-q-Formel

Nun gut, die Nullstellen kann ich nach Anwendung der p-q-Formel bestätigen..

[mm]\bruch{1}{x^3-3x^2+2x} \ = \ \bruch{A}{x} + \bruch{B}{x-1} + \bruch{C}{x-2} [/mm]

Wenn ich die zusammenfasse und berechne, kommt bei mir

[mm]\bruch{A-B+C)x + (B)x^2 -2A}{(x-1)(x-2)}[/mm] raus..

Und nun muss ich zu geben, habe ich noch nicht ganz geschnaggelt, wie ich jetzt wieder eine lineare Gleichung erhalte..



Bezug
                        
Bezug
Partitialbruchzerlegung: Korrektur
Status: (Antwort) fertig Status 
Datum: 17:48 Di 07.06.2005
Autor: Roadrunner

Hallo Fruchtsaft!


> Generell ging es mir nur um den Nenner.. Der Bruch heisst
> [mm]2x^2-4x+18/x^3-3x^2+2x[/mm]

Ah ja ...

  

> Wenn ich die zusammenfasse und berechne, kommt bei mir
>  
> [mm]\bruch{A-B+C)x + (B)x^2 -2A}{(x-1)(x-2)}[/mm] raus..

[notok] Ich erhalte hier:

[mm]\bruch{x^2*(A+B+C)+x*(-3A-2B-C)+2A}{\red{x}*(x-1)*(x-2)}[/mm]


Damit wird nun:

[mm]\bruch{\red{(A+B+C)}*x^2+\blue{(-3A-2B-C)}*x+\green{2A}}{x*(x-1)*(x-2)} \ = \ \bruch{\red{2}*x^2+(\blue{-4})*x+\green{18}}{x^3-3x^2+2x}[/mm]


Es ergibt sich also folgendes Gleichungssystem:

[mm]\red{A+B+C} \ = \ \red{2}[/mm]

[mm]\blue{-3A-2B-C} \ = \ \blue{-4}[/mm]

[mm]\green{2A} \ = \ \green{18}[/mm]


Kommst Du nun alleine weiter?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Partitialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 07.06.2005
Autor: Fruchtsaft

Ok, Danke für die Ausführung..

Also es müsste somit c=9, b=16 und a=9 sein..

Gruss

Bezug
                                        
Bezug
Partitialbruchzerlegung: Fast ...
Status: (Antwort) fertig Status 
Datum: 18:19 Di 07.06.2005
Autor: Roadrunner

Hallo Fruchtsaft!


> Also es müsste somit c=9, b=16 und a=9 sein..

[notok] Ich habe erhalten: $b \ = \ [mm] \red{-}16$ [/mm] !


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]