www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Partielle Integr/Differti.
Partielle Integr/Differti. < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integr/Differti.: Idee, Korrektur
Status: (Frage) überfällig Status 
Datum: 14:48 So 06.05.2012
Autor: nobodon

Aufgabe
Es sei f: [a,b]x[a,b]--> C (komplexe Zahlen) stetig und
[mm] $f_1(x,y):=\frac{df}{dx}(x,y) [/mm] $ existiere, also ableitung nach der 1. Var., und sei stetig. Zeige:

$I(x) = [mm] \int_{a}^{x} [/mm] f(x,y) dy$ ist diffbar auf (a,b) und es gilt
$I'(x) = f(x,x) + [mm] \int_{a}^{x} f_1(x,y) [/mm] dy$


Hey Leute,


Mein (falscher) ansatz: Sei [mm] $F_2$ [/mm] eine Stammfunktion nach der 2. Var

$I'(x) = [mm] d(\int_{a}^{x} [/mm] f(x,y) dy)/dx = [mm] \frac{dF_2}{dx}(x,x) [/mm] - [mm] \frac{dF_2}{dx}(x,a) [/mm] = f(x,x)  - [mm] \frac{dF_2}{dx}(x,a)$ [/mm] und nun?
2. Gleichheit: habe lediglich HDI angewendet und f nach y integriert

Gruß

        
Bezug
Partielle Integr/Differti.: 'Cmon
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mo 07.05.2012
Autor: nobodon

wirklich niemand ?

Bezug
                
Bezug
Partielle Integr/Differti.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 07.05.2012
Autor: nobodon

wirklich niemand, dachte die aufgabe ist halbwegs einfach..........

Bezug
        
Bezug
Partielle Integr/Differti.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 09.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]