Partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:29 Fr 13.07.2012 | Autor: | Ciotic |
Aufgabe | Berechnen Sie die zweiten partiellen Ableitungen [mm] $f_{x_{1},x_{1}}, f_{x_{1},x_{2}}$ [/mm] und [mm] $f_{x_{2},x_{2}}$ [/mm] der Funktion [mm] $f(x_{1},x_{2})=\wurzel{1-x_{1}^{2}-x_{2}^{2}}$ [/mm] |
Hallo zusammen, ich komme bei obiger Aufgabe nicht so recht weiter. Das Vorgehen ist klar, zweimal nach der jeweiligen Variable ableiten.
Dafür habe ich erstmal [mm] $f_{x_{1}}=-\bruch{x_{1}}{\wurzel{1-x_{1}^{2}-x_{2}^{2}}}$ [/mm] gebildet. Mein Problem ist nun, wie ich diesen Term nochmals nach [mm] x_{1} [/mm] ableiten kann.
Ich hätte gedacht, man könne die Quotientenregel anwenden, das führt mich aber nicht auf das richtige Ergebnis. Kann man diese Regel nur anwenden, wenn im Zähler und Nenner nur die Variable, nach der man ableitet ist und keine verkettete Funktion?
Danke !
|
|
|
|
> Berechnen Sie die zweiten partiellen Ableitungen
> [mm]f_{x_{1},x_{1}}, f_{x_{1},x_{2}}[/mm] und [mm]f_{x_{2},x_{2}}[/mm] der
> Funktion [mm]f(x_{1},x_{2})=\wurzel{1-x_{1}^{2}-x_{2}^{2}}[/mm]
> Hallo zusammen, ich komme bei obiger Aufgabe nicht so
> recht weiter. Das Vorgehen ist klar, zweimal nach der
> jeweiligen Variable ableiten.
>
> Dafür habe ich erstmal
> [mm]f_{x_{1}}=-\bruch{x_{1}}{\wurzel{1-x_{1}^{2}-x_{2}^{2}}}[/mm]
> gebildet. Mein Problem ist nun, wie ich diesen Term
> nochmals nach [mm]x_{1}[/mm] ableiten kann.
>
> Ich hätte gedacht, man könne die Quotientenregel
> anwenden, das führt mich aber nicht auf das richtige
> Ergebnis. Kann man diese Regel nur anwenden, wenn im
> Zähler und Nenner nur die Variable, nach der man ableitet
> ist und keine verkettete Funktion?
>
Wieso? Warum sollte [mm] $\sqrt{1-c-x^2}$ [/mm] denn etwas anderes sein als [mm] $\sqrt{1-y^2-x^2}$? [/mm] Für die Ableitung spielt das keine Rolle, wenn nur x die abhängige Variable ist. Du kannst die Quotientenregel verwenden, musst halt dann mit dem Doppelbruch aufpassen. Poste deine Schritte, dann suchen wir den Fehler (wenn es einen gibt)
> Danke !
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:52 Fr 13.07.2012 | Autor: | Ciotic |
Hmm, ich habe das jetzt noch mal in Ruhe gerechnet und siehe da, ich komme auf das Richtige Ergebnis:
$ [mm] f_{x_{1},x_{1}}=\bruch{x_{2}^{2}-1}{\wurzel{1-x_{1}^{2}-x_{2}^{2}}^{\bruch{3}{2}}} [/mm] $
|
|
|
|
|
Hallo Ciotic,
> Hmm, ich habe das jetzt noch mal in Ruhe gerechnet und
> siehe da, ich komme auf das Richtige Ergebnis:
>
> [mm]f_{x_{1},x_{1}}=\bruch{x_{2}^{2}-1}{\wurzel{1-x_{1}^{2}-x_{2}^{2}}^{\bruch{3}{2}}}[/mm]
Der Nenner muss doch so lauten:
[mm]\left(1-x_{1}^{2}-x_{2}^{2}\right)^{\bruch{3}{2}}[/mm]
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:02 Fr 13.07.2012 | Autor: | Ciotic |
Stimmt, die Wurzel wollte wohl im Eifer des Gefechts noch mit ;)
|
|
|
|