www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Partialsumme..?
Partialsumme..? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialsumme..?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 So 01.02.2009
Autor: Pille456

Aufgabe
Beweisen Sie für n [mm] \ge [/mm] m [mm] \ge [/mm] 2
[mm] \summe_{k=m}^{n} \bruch{1}{k^{3}-k} [/mm] = [mm] \bruch{1}{2(m^{2}-m)} [/mm] - [mm] \bruch{1}{2(n^{2}-n)} [/mm]

Hi,
Aufgabe ist ja oben.
Mein Ansatz sah so aus:
Für den Fall n = m ist der Ausdruck mit ein paar Umformungen bewiesen,also nicht so schwer. Dann dachte ich mir, den ausdruck für n = m+1 zu beweisen, also ähnlich einer Induktion, aber dabei fehlen mir ja alle Fälle wie n = m+2(+3,4..usw), daher musste ich diese Idee doch leider wieder verwerfen.
Ich habe den Verdacht, dass man das mit der Partialsumme oder einem Konvergenzkriterium lösen könnte, wobei mir gerade ein Ansatz total schleierhaft wäre. Jemand ne Idee oder vielleicht eine hilfreiche Umformung?

        
Bezug
Partialsumme..?: Querverweis
Status: (Antwort) fertig Status 
Datum: 21:58 So 01.02.2009
Autor: Loddar

Hallo Pille!


Sieh' mal hier; da wurde dieselbe Reihe vor kurzem behandelt.


Gruß
Loddar


Bezug
                
Bezug
Partialsumme..?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 So 01.02.2009
Autor: Pille456

Ahh alles klar, danke danke! :)
Aus reiner Neugierde, da ich den Ansatz auch zuerst gewählt hatte: Wie würde der Beweis per vollständige Induktion aussehen?

Bezug
                        
Bezug
Partialsumme..?: Induktionsvariable n
Status: (Antwort) fertig Status 
Datum: 22:04 So 01.02.2009
Autor: Loddar

Hallo Pille!


Begine mit $n \ = \ m$ (Induktionsanfang) und führe anschließend wie gewohnt den Induktionsschritt von $n \ [mm] \mapsto [/mm] \ n+1$ .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]