www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Partialbruchzerlegung
Partialbruchzerlegung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:30 Sa 26.12.2009
Autor: capablanca

Aufgabe
Zerlegen Sie die folgenden gebrochenrationalen Funktion in Partialbrüche:

[mm] f(x)=\bruch{x^2-1}{x^2-4} [/mm]

Hallo, ich biete um ein Hinweis was ich bei dieser Aufgabe falsch gemacht habe?
die Lösung soll [mm] 1+\bruch{3}{4(x-2)}-\bruch{3}{4(x+2)} [/mm] sein.

Meine Rechnung:

[mm] f(x)=\bruch{x^2-1}{x^2-4}=\bruch{x^2-1}{(x+2)(x-2)}=\bruch{A}{x+2}+\bruch{B}{x-2} [/mm]

dann
[mm] \bruch{x^2-1}{(x+2)(x-2)}=\bruch{A}{x+2}+\bruch{B}{x-2} [/mm]
auf den gleichen Nenner gebracht und Multiplikation beider Seiten mit dem Nenner liefert:
[mm] (x^2-1)=\bruch{A(x-2)}{x+2}+\bruch{B(x+2)}{x-2} [/mm]
Ein Koeffizientenvergleich ergibt dann das Gleichungssystem
     1         <- [mm] x^2 [/mm]
  A+  B =0  <- x
-2A+2B=-1 <-1
so erhält man mit Gaußschen Algorithmus die unbekannten Konstanten:
[mm] B=-\bruch{1}{4} [/mm]
A= [mm] \bruch{1}{4} [/mm]

also meine Lösung:
[mm] 1+\bruch{1}{4(x+2)}-\bruch{1}{4(x-2)} [/mm]
und wieso ist die Lösung:
[mm] 1+\bruch{3}{4(x-2)}-\bruch{3}{4(x+2)} [/mm]

was habe ich falsch gemacht?Wie kommt man auf die dreien im Zähler in der Lösung?

würde mich über ein Tipp freuen

danke im Vorraus

gruß Alex




        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Sa 26.12.2009
Autor: angela.h.b.


> Zerlegen Sie die folgenden gebrochenrationalen Funktion in
> Partialbrüche:
>  
> [mm]f(x)=\bruch{x^2-1}{x^2-4}[/mm]
>  Hallo, ich biete um ein Hinweis was ich bei dieser Aufgabe
> falsch gemacht habe?
>  die Lösung soll [mm]1+\bruch{3}{4(x-2)}-\bruch{3}{4(x+2)}[/mm]
> sein.
>  
> Meine Rechnung:
>  
> [mm]f(x)=\bruch{x^2-1}{x^2-4}=\bruch{x^2-1}{(x+2)(x-2)}=\bruch{A}{x+2}+\bruch{B}{x-2}[/mm]
>  
> dann
>  [mm]\bruch{x^2-1}{(x+2)(x-2)}=\bruch{A}{x+2}+\bruch{B}{x-2}[/mm]
>  auf den gleichen Nenner gebracht und Multiplikation beider
> Seiten mit dem Nenner liefert:
>  [mm](x^2-1)=\bruch{A(x-2)}{x+2}+\bruch{B(x+2)}{x-2}[/mm]
>  Ein Koeffizientenvergleich ergibt dann das
> Gleichungssystem
>       1         <- [mm]x^2[/mm]

Hallo,

wo kommt diese Zeile denn her, und was meinst Du mit ihr?
Einen Koeffizientenvergleich für die Koeffizienten vor [mm] x^2 [/mm] kannst Du doch schlecht machen, denn [mm] x^2 [/mm] kommt ja rechts gar nicht vor.

Des Rätsels Lösung: mach eine Polynomdivision. Du brauchst, daß der Grad des Zählerpolynoms kleiner ist als der des Polynoms im Nenner.

Gruß v. Angela



>    A+  B =0  <- x
>  -2A+2B=-1 <-1
>  so erhält man mit Gaußschen Algorithmus die unbekannten
> Konstanten:
>  [mm]B=-\bruch{1}{4}[/mm]
>  A= [mm]\bruch{1}{4}[/mm]
>  
> also meine Lösung:
>  [mm]1+\bruch{1}{4(x+2)}-\bruch{1}{4(x-2)}[/mm]
>  und wieso ist die Lösung:
>  [mm]1+\bruch{3}{4(x-2)}-\bruch{3}{4(x+2)}[/mm]
>  
> was habe ich falsch gemacht?Wie kommt man auf die dreien im
> Zähler in der Lösung?
>  
> würde mich über ein Tipp freuen
>  
> danke im Vorraus
>  
> gruß Alex
>  
>
>  


Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Sa 26.12.2009
Autor: capablanca

Danke für die schnelle Antwort!
soll ich nur im Zähler die Polynomdivision durchführen oder mit dem ganzen Bruch?


gruß Alex



Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Sa 26.12.2009
Autor: Steffi21

Hallo, wie willst du denn nur mit dem Zähler eine Division durchführen, die Division verlangt einen Dividend und einen Divisor, du hast [mm] \bruch{x^{2}-1}{x^{2}-4}, [/mm] beginne mit Polynomdivision

[mm] (x^{2}-1):(x^{2}-4)=1+\bruch{3}{x^{2}-4} [/mm] somit wäre die 1 geklärt, jetzt Partialbruchzerlegung

[mm] \bruch{3}{x^{2}-4}=\bruch{A}{x+2}+\bruch{B}{x-2} [/mm]

bestimme A und B über den Koeffizientenvergleich

Steffi



Bezug
                                
Bezug
Partialbruchzerlegung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Sa 26.12.2009
Autor: capablanca

Danke für die ausführliche Antwort, jetzt ist mir alles klar!

gruß Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]