Parametrisierung Kreis 3D < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen!
Ich bin auf der Suche nach der Parametrisierung eines Einheitskreises im dreidimensionalen. Der Kreis muss In der Ebene mit dem allgemeinen Vektor n = [mm] (n_1,n_2,n_3) [/mm] als Normale sein. Die Parametrisierung brauche ich um die Zirkulation eines Feldes entlang dieses Kreises zu berechnen.
Im zweidimensionalen wäre die Parametrisierung ja [mm] \varphi [/mm] -> [mm] \vektor{cos\varphi \\ sin\varphi} [/mm] mit [mm] \varphi \in [0,2\pi]
[/mm]
Eine Überlegung die ich gemacht habe aber bei der ich nicht weiterkomme:
Die Ebene hat die Gleichung [mm] a_1\cdot x+a_2\cdot y+a_3\cdot [/mm] z=0 und das kann man schneiden mit der Einheitsspähre [mm] x^2+y^2+z^2=1 [/mm] was mich zu einer Gleichung führen könnte.
Ist aber wahrscheinlich der falsche Ansatz für mein Problem da mich das nicht auf eine Parametrisierung führen wird..
Ich hoffe das ihr mir weiterhelfen könnt :)
Viele Grüsse, Patrick
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:45 Di 14.06.2011 | Autor: | chrisno |
Mein Weg:
- 2D-Parametrisierung in der x-y-Ebene hinschreiben, wie Du es getan hast.
- Die beiden Winkel bestimmen, die angeben, wohin man die z-Achse kippen muss, um die Richtung von n zu erhalten.
- Die vorhandene Parametrisierung durch mit Hilfe der Drehmatritzen entsprechend drehen.
Ich hoffe, dass es noch eine elegantere Lösung gibt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:46 Mi 15.06.2011 | Autor: | Patrick99 |
Vielen Dank für deine Hilfe. Ich werds mal auf diesem Weg versuchen :)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:39 Mi 15.06.2011 | Autor: | weduwe |
eine möglichkeit wäre mit einem beliebigen vektor [mm] \vec{v} [/mm] mit [mm] \vec{v}\cdot\vec{n}=0 [/mm] und dem mittelpunkt [mm] \vec{m}\in [/mm] E und r = 1:
[mm] \vec{x}=\vec{m}+\frac{\vec{v}}{|\vec{v}|}\cdot cos\phi+\frac{\vec{v}\times\vec{n}}{|\vec{v}\times\vec{n}|}\cdot sin\phi
[/mm]
|
|
|
|