www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthonormalbasis
Orthonormalbasis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:09 Di 24.10.2006
Autor: korbee

Aufgabe
Finden Sie eine Orthonormalbasis v1, v2, v3 von R3, so dass v1 ein skalares Vielfaches des Vektors (−1, −1, 0 ) ist.

kann mir jemand helfen, diese Aufgabe zu lösen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Di 24.10.2006
Autor: angela.h.b.


> Finden Sie eine Orthonormalbasis v1, v2, v3 von R3, so dass
> v1 ein skalares Vielfaches des Vektors (−1, −1,
> 0 ) ist.
>  kann mir jemand helfen, diese Aufgabe zu lösen?


Hallo,

[willkommenmr].

Weißt Du denn, was eine Orthonormalbasis ist des [mm] \IR^3 [/mm] ist?
Das sind drei linear unabhängige Vektoren (Basis) der Länge 1 (normiert),
welche paarweise senkrecht zueinander sind (orthogonal).

Einer der gesuchten Vektoren, [mm] v_1, [/mm]  soll ein skalares Vielfaches von (−1, −1, 0 ) sein. Also läßt sich [mm] v_1 [/mm] schreiben als k(−1, −1, 0 ) .
Es muß [mm] |v_1|=1 [/mm] sein.  Nun, hieraus kannst Du Dir ein k errechnen.

Wenn Du [mm] v_1 [/mm] gefunden hast, guckst Du scharf drauf, um einen dazu senkrechten Vektor  [mm] w_2 [/mm] zu finden. Du weißt ja (hoffentlich!), daß in diesem Fall [mm] v_1*w_2=0 [/mm] sein muß.
Diesen Vektor [mm] w_2 [/mm] mußt Du dann noch normieren, falls er nicht bereits die Lange 1 hat. Damit hast Du [mm] v_2. [/mm]

Jetzt suchst Du einen Vektor [mm] w_3, [/mm] der sowohl senkrecht zu [mm] v_1 [/mm] als auch zu [mm] v_2 [/mm] ist. Möglicherweise gelingt Dir das durch draufgucken. Normieren, fertig.

Wenn's mit Gucken nicht getan ist: Kreuzprodukt.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]