Orthogonalität von Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie alle Vektoren des [mm] \IR^4, [/mm] die sowohl zu [mm] [1,2,3,4]^T [/mm] als auch zu [mm] [0,1,1,0]^T [/mm] orthogonal sind. |
Hallo Leute!
Da ich für eine Klausur lerne und sowas noch nicht gemacht habe, bitte ich um eure Hilfe. Orthogonalität bedeuted doch das ich alle Vektoren finden soll die senkrecht und im rechten Winkel auf die beiden oben angegebenen Vektoren treffen. Wie stelle ich das an? Irgendwie muss ich doch sicher die beiden obigen Vektoren kombinieren, denn es muss ja für beide erfüllt sein oder? Kann mir bitte jemand helfen?
Gruß, Esperanza
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:57 Mi 13.12.2006 | Autor: | choosy |
> Bestimmen Sie alle Vektoren des [mm]\IR^4,[/mm] die sowohl zu
> [mm][1,2,3,4]^T[/mm] als auch zu [mm][0,1,1,0]^T[/mm] orthogonalsind.
am besten geht es so: ein vektor (a,b,c,d) steht auf den beiden vektoren orthogonal genau dann, wenn das skalaprodukt dieses vektors mit den beiden anderen 0 ist, sprich falls
$a+2b+3c+4d=0$
und
$b+c=0$
das sind 2 Gleichungen mit 4 Unbekannten. die Lösungen dieses Gleichungssystems ergeben die Vektoren die senkrecht auf den beiden gegebenen stehen...
|
|
|
|