www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthogonale Transformation
Orthogonale Transformation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Transformation: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:35 Di 11.09.2007
Autor: JanJan

Aufgabe
Wir betrachten den Vektorraum [mm] \IR^{3} [/mm] mit dem Standardskalarprodukt.
Man zeige: A, B [mm] \in \IR^{3,3} [/mm] orthogonale Transformationen, dann ist auch AB eine orthogonale Transformation

Damit A und B eine orthogonale Transformation darstellen, muss ja gelten:
(< () , () > sei das Skalarprodukt)

<Ax,Ay> = <Bx,By> = <x,y>  

Aber wie komme ich jetzt auf weitere Eigenschaften von A und B, so dass ich die Aufgabe lösen kann?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonale Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Di 11.09.2007
Autor: leduart

Hallo
die Eigenschaft sollte reichen!
Gruss leduart

Bezug
                
Bezug
Orthogonale Transformation: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:52 Di 11.09.2007
Autor: JanJan

Glaube ich hatte nen ordentlich dickes Brett vorm Kopf, habs jetzt:

[mm] = = \gdw A^{2} = \gdw A^{2} = \gdw = [/mm]

Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]